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Abstract Human behavior and affect is inherently a
dynamic phenomenon involving temporal evolution of pat-
terns manifested through a multiplicity of non-verbal behav-
ioral cues including facial expressions, body postures and
gestures, and vocal outbursts. A natural assumption for
human behavior modeling is that a continuous-time charac-
terization of behavior is the output of a linear time-invariant
system when behavioral cues act as the input (e.g., continu-
ous rather than discrete annotations of dimensional affect).
Here we study the learning of such dynamical system under
real-world conditions, namely in the presence of noisy behav-
ioral cues descriptors and possibly unreliable annotations
by employing structured rank minimization. To this end, a
novel structured rank minimization method and its scalable
variant are proposed. The generalizability of the proposed
framework is demonstrated by conducting experiments on 3
distinct dynamic behavior analysis tasks, namely (i) conflict
intensity prediction, (ii) prediction of valence and arousal,
and (iii) tracklet matching. The attained results outperform
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those achieved by other state-of-the-art methods for these
tasks and, hence, evidence the robustness and effectiveness
of the proposed approach.
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1 Introduction

Analysis of human behavior concerns detection, tracking,
recognition, and prediction of complex human behaviors
including affect and social behaviors such as agreement and
conflict escalation/resolution from audio-visual data cap-
tured in naturalistic, real-world conditions. Modeling human
behavior for automatic analysis in such conditions is the pre-
requisite for next-generation human-centered computing and
novel applications such as personalized natural interfaces
(e.g., in autonomous cars), software tools for social skills
enhancement including conflict management and negotia-
tion, and assistive technologies (e.g., for independent living),
to mention but a few.

Traditionally, research in behavior and affect analysis has
focused on recognizing behavioral cues such as smiles, head
nods, and laughter (Déniz et al. 2008; Kawato and Ohya
2000; Lockerd and Mueller 2002), pre-defined posed human
actions (e.g., walking, running, and hand-clapping) (Dollár
et al. 2005; Niebles et al. 2008; Georgakis et al. 2012) or dis-
crete, basic emotional states (e.g., happiness, sadness) (Pantic
and Rothkrantz 2000; Cohen et al. 2003; Littlewort et al.
2006)mainly fromposed data acquired in laboratory settings.
However, these models are deemed unrealistic as they are
unable to capture the temporal evolution of non-basic, pos-
sibly atypical, behaviors and subtle affective states exhibited
by humans in naturalistic settings. In order to accommodate
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such behaviors and subtle expressions, continuous-time and
dimensional descriptions of human behavior and affect have
been recently employed (Gunes and Pantic 2010; Gunes et al.
2011; Pantic et al. 2011; Pantic andVinciarelli 2014; Vrigkas
et al. 2015). For instance, the temporal evolution of level of
interest (Nicolaou et al. 2014; Panagakis et al. 2016) and
agreement (Bousmalis et al. 2011; Rakicevic etal. 2016), or
the intensity of pain (Kaltwang et al. 2012, 2015) and con-
flict (Kim et al. 2012a, b; Panagakis et al. 2016) is precisely
described as continuous-valued function of time. In analogy,
dimensional and continuous description of human emotion
consists of characterizing emotional states in terms of a
number of latent dimensions over time (Gunes et al. 2011).
Two dimensions are deemed sufficient for capturing most of
the affective variability: valence and arousal (V–A), signify-
ing respectively, how positive/negative and active/inactive an
emotional state is Lane and Nadel (2002).

Representative machine learning models employed for
automatic, continuous behavior and emotion analysis include
Hidden Markov Models (HMMs) (Cohen et al. 2003)
for facial expression recognition, Dynamic Bayesian Net-
works (DBN) for human motion classification and track-
ing (Pavlović et al. 1999), Conditional Random Fields
(CRFs) for prediction of visual backchannel cues (i.e.,
head nods) (Morency et al. 2010), Long-Short Term Mem-
ory (LSTM) Neural Networks for continuous prediction of
dimensional affect (Nicolaou et al. 2011), and regression-
based approaches for continuous emotion and depression
recognition or pain estimation (Nicolaou et al. 2012; Valstar
et al. 2013; Kaltwang et al. 2012). Despite their merits, these
methods rely on large sets of training data, involve learning
of a large number of parameters, they do not model dynamics
of human behavior and affect in an explicit way, and, more
importantly, they are fragile in the presence of gross non-
Gaussian noise and incomplete data, which is abundant in
real-world (visual) data.

Contributions In thiswork,wemodel and tackle the problem
of dynamic behavior analysis in the presence of gross, but
sparse noise and incomplete visual data under a different
perspective, making the following contributions:

1. The modeling assumption here is that for smoothly-
varying dynamic behavior phenomena, such as conflict
escalation and resolution, temporal evolution of human
affect described in terms of valence and arousal, or
motion of human crowds, among others, the observed
data can be postulated to be trajectories (inputs and out-
puts) of a linear time-invariant (LTI) system. Recent
advances in system theory (Van Overschee and De Moor
2012; Fazel et al. 2013) indicate that such dynamics can
be discovered by learning a low-complexity (i.e., low-

order) LTI system based on its inputs and outputs via rank
minimization of a Hankel matrix constructed from the
observed data. Here, continuous-time annotations char-
acterizing the temporal evolution of relevant behavior or
affect are considered as system outputs, while (visual)
features describing behavioral cues are deemed system
inputs. In practice, visual data are often contaminated by
gross, non-Gaussian noise mainly due to pixel corrup-
tions, partial image texture occlusions or feature extrac-
tion failure (e.g., incorrect object localization, tracking
errors), and human assessments of behavior or affect
may be unreliable mainly due to annotator subjectivity
or adversarial annotators. The existing structured rank
minimization-based methods perform sub-optimally in
the presence of gross corruptions. Therefore, to robustly
learn a LTI system from grossly corrupted data, we for-
mulate a novel �q -norm regularized (Hankel) structured
Schatten-p norm minimization problem in Sect. 3. The
Schatten p- and the sparsity promoting �q -normact either
as convex surrogates, when p = q = 1, or as non-convex
approximations, when p, q ∈ (0, 1), of the rank function
and the �0-(quasi) norm, respectively.

2. To tackle the proposed optimization problem, an algo-
rithm based on the Alternating-Directions Method of
Multipliers (ADMM) (Bertsekas 2014) is developed in
Sect. 4. Furthermore, in the same section a scalable ver-
sion the algorithm is elaborated.

3. The proposed model is the heart of a general and novel
framework for dynamic behavior modeling and analysis,
which is detailed in Sect. 5. A common practice in behav-
ioral and affective computing is to train machine learning
algorithms by employing large sets of training data that
comprehensively cover different subjects, contexts, inter-
action scenarios and recording conditions. The proposed
approach allows us to depart from this practice. Specif-
ically, we demonstrate for the first time that complex
human behavior and affect, manifested by a single per-
son or group of interactants, can be learned and predicted
based on a small amount of person(s)-specific observa-
tions, amounting to a duration of just a few seconds.

4. The effectiveness and the generalizability of the pro-
posed model is corroborated by means of experiments
on synthetic and real-world data in Sect. 6. In par-
ticular, the generalizability of the proposed framework
is demonstrated by conducting experiments on 3 dis-
tinct dynamic behavior analysis tasks, namely (i) con-
flict intensity prediction, (ii) prediction of valence and
arousal, and (iii) tracklet matching. The attained results
outperform those achieved by other state-of-the-artmeth-
ods on both synthetic and real-world data and, hence,
evidence the robustness and effectiveness of the proposed
approach. The proposed framework is graphically illus-
trated in Fig. 1.
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Fig. 1 Illustration of the proposed dynamic behavior analysis frame-
work, as applied on the task of conflict intensity prediction for a
sequence from CONFER dataset. A portion of the sequence frames

is used for LTI system learning through the proposed structured rank
minimization method (training), while the remaining frames are used
for prediction (test)

2 Background and Related Work

In this section, notation conventions and mathematical for-
malism related toHankelmatrix structure arefirst introduced.
Next, in order to make the paper self-contained, we describe
how learning of dynamical systems and, in particular, of aLTI
systemcanbe cast as a (Hankel) structured rankminimization
problem. Related works on structured rankminimization and
their applications in visual information processing are also
described.

2.1 Preliminaries

Notations Matrices (vectors) are denoted by uppercase (low-
ercase) boldface letters, e.g., X, (x). I denotes the identity
matrix of compatible dimensions. The i th element of vec-
tor x is denoted as xi , the i th column of matrix X is
denoted as xi, while the entry of X at position (i, j) is
denoted by xi j . For the set of real numbers, the symbol
R is used. For two matrices A and B in R

m×n, A ◦ B
denotes the Hadamard (entry-wise) product of A and B,
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while 〈A,B〉 denotes the inner product tr(ATB), where tr(·)
is the trace of a square matrix. For a symmetric positive
semi-definite matrix A, we write A � 0. Regarding vec-

tor norms, ‖x‖ :=
√∑

i x
2
i denotes the Euclidean norm.

The sign function is denoted by sgn(·), while | · | denotes
the absolute value operator. Regarding matrix norms, the �0-
(quasi-) norm, which equals the number of non-zero entries,

is denoted by ‖ · ‖0. ‖X‖q :=
(∑

i
∑

j |Xi j |q
)1/q

is the

matrix �q -norm, of which the Frobenius norm ‖X‖F :=√∑
i
∑

j X
2
i j = √

tr(XTX) is a special case when q = 2.

‖X‖ denotes the spectral norm, which equals the largest
singular value. If σi (X) is the i th singular value of X,
‖X‖Sp := (∑

i σi (X)p
)1/p is the Schatten p-norm of X, of

which the nuclear norm ‖X‖∗ :=∑i σi (X) is a special case
when p = 1. Linear maps are denoted by scripted letters. For
a linear map A : Rm×n → R

p, A∗ denotes the adjoint map
ofA, while σmax(A) denotes the maximum singular value of
A. I denotes the identity map.

The Hankel Matrix Structure Let A = [A0 A1 . . . Aj+k−2]
be a m × n( j + k − 1) matrix, with each At being a m × n
matrix for t = 0, 1, . . . , j + k − 2. We define the Hankel
linear map H(A) := Hm,n, j,k(A)�, where

Hm,n, j,k(A) =

⎛
⎜⎜⎜⎝

A0 A1 · · · Ak−1

A1 A2 · · · Ak
...

...
. . .

...

Aj−1 Aj · · · Aj+k−2

⎞
⎟⎟⎟⎠ ∈ R

mj×nk, (1)

and � ∈ R
nk×q with σmax(�) ≤ 1 (Fazel et al. 2013). There-

fore, Hm,n, j,k(A) is a block-Hankel matrix with j×k blocks,
where each Ai is a matrix of dimension m × n. Note that the
Hankel structure enforces constant entries along the skew
diagonals. We denote by T = j + k − 1 the total number of
observations, while M = mj and N = nk denote the num-
ber of rows and columns of the Hankel matrix Hm,n, j,k(A),
respectively. For notational convenience, we write H(A) to
denote Hm,n, j,k(A), when the dimensionsm, n, j, k are clear
from the context.

The adjointmapH∗ is defined asH∗(�)=H∗
m,n, j,k(��T ),

where for any matrix B ∈ R
mj×nk

H∗
m,n, j,k(B) = H∗

m,n, j,k

⎛
⎜⎜⎜⎝

B00 B01 · · · B0,k−1

B10 B11 · · · B1,k−1
...

...
. . .

...

Bj−1,0 Bj−1,1 · · · Bj−1,k−1

⎞
⎟⎟⎟⎠

= [B00 B01 + B10 . . .

B02 + B11 + B20 · · · Bj−1,k−1
] ∈ R

m×n( j+k−1). (2)

It is proved in Fazel et al. (2013) that
∥∥∥H∗

m,n, j,k(B)

∥∥∥
2

F
≤

L ‖B‖2F , where L := min{ j, k}. This finding, combined with
σmax(�) ≤ 1, entails that the spectral normof the adjointmap
H∗ is less than or equal to

√
L . Herein, the space of Hankel

matrices is denoted by SH.

2.2 LTI System Learning via Structured Rank
Minimization

Dynamical systems, such as LTI systems, are able to com-
pactly model the temporal evolution of time-varying data.
While the dynamic model can be considered as known in
some applications (e.g., Brownian dynamics in motion mod-
els), it is in general unknown and, hence, should be learned
from the available data.

Consider a sequence of observed outputs yt ∈ R
m and

inputs ut ∈ R
d , respectively, for t = 0, . . . , T − 1. The

goal is to find from the observed data, a state-space model,
corresponding to a LTI system, given by

xt+1 = Axt + But
yt = Cxt + Dut

(3)

such that the system is of low-order, i.e., it is associated with
a low-dimensional state vector xt ∈ R

n at time t , where n
is the unknown true system order. The order of the system
(i.e., the dimension of the state vector) captures the memory
of the system and it is a measure of its complexity. In (3),
both the state and the measurement equations are linear and
the parameters of the system, i.e., the matrices A,B,C,D
are constant over time but their dimensions are unknown.
Therefore, to determine the model, we need to find the model
order n, the matrices A,B,C,D, and the initial state x0. To
this end, the model order should be estimated first. Next,
the estimation of the system order using Hankel matrices is
summarized.

Let us assume that the unknown state vectors has dimen-
sion r > n and let X = [x0 x1 . . . xT−1] ∈ R

r×T , Y =
[y0 y1 . . . yT−1] ∈ R

m×T ,U = [u0 u1 . . . uT−1] ∈
R
d×T be the matrices containing in their columns the

unknownstate vectors, the observedoutputs, and theobserved
inputs of the system, respectively, for t = 0, 1, . . . , T − 1.
Let also Hm,1,r+1,T−r (Y) and Hd,1,r+1,T−r (U) be the Han-
kel matrices constructed from the observed system outputs
and inputs, respectively, according to (1) andU⊥ ∈ R

(T−r)×q

be the matrix whose columns form an orthogonal basis for
the nullspace of Hd,1,r+1,T−r (U). Then, the LTI in (3) can be
expressed by employing the above mentioned Hankel matri-
ces as follows.

Hm,1,r+1,T−r (Y) = GX + LHd,1,r+1,T−r (U), (4)
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where

G =

⎛
⎜⎜⎜⎝

C
CA
...

CAr

⎞
⎟⎟⎟⎠ , L =

⎛
⎜⎜⎜⎜⎜⎝

D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...

CAr−1B CAr−2B · · · · · · D

⎞
⎟⎟⎟⎟⎟⎠

(5)

By right-multiplying both sides of (4) withU⊥ and by setting
H(Y) = H(Y)U⊥ we obtain

H(Y) = GXU⊥. (6)

If the inputs are persistently exciting (i.e., XU⊥ has full
rank) and the outputs are exact, then by (6) it is clear that
the system order, which is measured by the rank of G (Van
Overschee and DeMoor 2012), is equal to rank (H(Y)) (Van
Overschee and De Moor 2012) and from it a system realiza-
tion (i.e., estimation of the unknown system parameters) is
easily computed by solving a series of systems of linear equa-
tions following, for example, Van Overschee and De Moor
(2012).

However, real-world data are not exact and thus H(Y) is
full-rank. Therefore, to find theminimumorder realization of
the system, we seek a matrix Ŷ which is as close as possible,
in the least square sense, to the observed data and the rank of
H(Ŷ) is minimal. Formally, we seek to solve the following
Hankel structured rank minimization problem

min
Ŷ

rank(H(Ŷ)) + λ

2
‖Ŷ − Y‖2F , (7)

where λ > 0. Assuming that Ŷ is a solution of (7), then
rank(H(Ŷ)) acts as the estimated system order1 and Ŷ is
used next to estimate the system parameters Â, B̂, Ĉ, D̂ and
the initial state vector x̂0 by solving a series of systems of
linear equations (Van Overschee and De Moor 2012).

2.3 Hankel Rank Minimization Models and
Applications

Problem (7) is combinatorial due to the discrete nature of
the rank function and thus difficult to be solved (Fazel et al.
2001). To tackle this problem, several approximations have
been proposed. In particular, by employing the nuclear norm,
which is the convex surrogate of the rank function (Fazel et al.
2001), a convex approximation of (7) has been proposed in
Fazel et al. (2013). By adopting the variational norm of the

1 Note that for all experiments presented in this paper, the system order
is defined as the rank of the estimated low-rank Hankel matrix, which
is calculated as the number of singular values that are larger than 0.5%
of the spectral norm, following Fazel et al. (2013).

nuclear norm (i.e., ‖Ŷ‖∗ = minŶ=UV ‖U‖2F + ‖V‖2F ), non-
linear approximations to (7) have been developed (Signoretto
et al. 2013; Yu et al. 2014). Furthermore, to estimate the
rank of an incomplete Hankel matrix (i.e., in the presence
of missing data), the models in Markovsky (2014), Dicle
et al. (2013) and Ayazoglu et al. (2012) have been proposed.
Representative structured rank minimization models along
with the optimization problems that they solve are listed in
Table 1.

The aforementioned models have been mainly applied in
the fields of system analysis and control theory for system
identification and realization and in finance for time-series
analysis and forecasting. More recently, learning dynamical
models via Hankel rank minimization has been exploited to
address computer vision problems such as activity recog-
nition (Li et al. 2011; Bhattacharya et al. 2014), tracklet
matching (Ding et al. 2007a, 2008; Dicle et al. 2013),
multi-camera tracking (Ayazoglu et al. 2011), video inpaint-
ing (Ding et al. 2007b), causality detection (Ayazoglu et al.
2013), and anomaly detection (Surana et al. 2013). However,
none of these methods has been exploited to learn behavior
dynamics based on continuous annotations of behavior or
affect and visual features. This will be investigated shortly
in Sect. 6.

Remark Despite their merits, the aforementioned models
exhibit the following limitations. By adopting the least
squares error, the majority of the models in Table 1 assume
Gaussian distributions with small variance (Huber 2011).
Such an assumption rarely holds in real-world data that are
often corrupted by sparse, non-Gaussian noise (cf. Sect. 1).
This drawback is partially alleviated in SRPCA (Ayazoglu
et al. 2012), where a sparsity promoting norm is incorpo-
rated into the nuclear norm minimization problem in order
to account for sparse noise of large magnitude. Further-
more, the convex relaxation of the rank function with the
nuclear norm in Fazel et al. (2013) andAyazoglu et al. (2012)
may introduce a relaxation gap. Therefore, due to the above
reasons, the estimated rank of the Hankel matrix obtained
by the models in Fazel et al. (2013) and Ayazoglu et al.
(2012) may be arbitrarily away from the true one (Dai and
Li 2014). On the other hand, since the models in Signoretto
et al. (2013), Yu et al. (2014) and Markovsky (2014) rely on
factorizations of the Hankel matrix, they implicitly assume
that the rank of the Hankel matrix is known in advance;
obviously this is not the case in practice. To alleviate the
aforementioned limitations and robustly estimate the rank of
the Hankel matrix in the presence of gross noise and missing
data, a novel structured rank minimization model is detailed
next.
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3 Problem Formulation

Let M = [m0 m1 . . . mT−1] ∈ R
D×T be a matrix contain-

ing in its columns contaminated by gross but sparse noise,
time varying data. The goal is to robustly learn the dynamics
underlying the data, in the presence of sparse, non-Gaussian
noise and missing data.

To this end, we seek to decomposeM as a superposition of
twomatrices:M = L+E, whereL ∈ R

D×T andE ∈ R
D×T ,

such that the Hankel matrix of L (i.e.,H(L) ∈ R
M×N ) be of

minimum rank and E be sparse. The minimum rank ofH(L)

correspond to the minimum-order LTI system that describes
the data, while by imposing E to be sparse, we account for
sparse, non-Gaussian noise.

A natural estimator accounting for the low-rank of the
Hankel matrixH(L) and the sparsity of E is to minimize the
rank ofH(L) and the number of non-zero entries of E, mea-
sured by the �0 (quasi)-norm. This is equivalent to solving
the following non-convex optimization problem.

min
L

rank(H(L)) + λ‖M − L‖0, (8)

whereλ is a positive parameter. Clearly, (8) is a robust version
of the Hankel structured rank minimization problem (7).

Problem (8) is intractable, as both rank and �0-norm
minimization are NP-hard (Vandenberghe and Boyd 1996;
Natarajan 1995). In order to tackle this NP-hard problem,
both convex and non-convex relaxations of the rank function
and the �0-norm are considered. To this end, we choose to
approximate the rank function and the �0-norm by the Schat-
ten p- and the �q -norm, respectively, and solve

min
L

‖H(L)‖p
Sp

+ λ ‖M − L‖qq , (9)

which is a convex optimization problem for p = q = 1 (i.e.,
the Schatten 1-norm is by definition the nuclear norm) and
non-convex for 0 < p, q < 1.

Convex approximations of the rank function and the
�0-(quasi)-norm by means of the nuclear norm (i.e., Schat-
ten 1-norm) (Fazel et al. 2001) and the �1-norm (Donoho
2006) have been widely applied in several rank and spar-
sity minimization problems (e.g., Candès et al. 2011). The
main advantage of this approach is that the global opti-
mum of the convex problems can be found relatively easily
by using off-the-shelf optimization methods such as the
ADMM. However, the convexification of rank minimiza-
tion problems may suffer from the following two drawbacks.
First, the recoverability of the low-rank solutions via nuclear
norm minimization is only guaranteed under incoherence
assumptions (e.g., Candès et al. 2011). Such assumptions
regarding incoherence may not be guaranteed in practical

scenarios (Dai and Li 2014). For example in the proposed
model, the resulting global optimal solution of the convex
instance of (9) (p, q ≥ 1) may be arbitrarily away from the
actual solution of (8). Second, it is known that the �1-norm
is a biased estimator (e.g., Zhang 2010). Since the nuclear
norm (or equivalently the Schatten-1 norm) is essentially the
application of the �1 norm on the singular values, it may
only find a biased solution. To alleviate the aforementioned
issues of the convex instance of (9), we further consider the
non-convex approximation of (8) by employing the Schatten-
p norm and �q -norm with p, q ∈ (0, 1). Such non-convex
functions have been shown to provide better estimation accu-
racy and variable selection consistency (Wang et al. 2014b)
in related approximations of �0-norm regularized rank min-
imization problems (Nie et al. 2012, 2013; Papamakarios
et al. 2014).

To disentangle the Schatten p- and �q -normminimization
sub-problems in (9) from thematrix structure and data-fitting
requirements, respectively, (9) is equivalently written as

min
N,L,E

‖N‖p
Sp

+ λ ‖E‖qq s.t.

{
M = L + E

N = H(L)

}
. (10)

To account also for (partially) missing observations inM, we
introduce the matrix W ∈ R

D×T which is given by

wi j =
{
1, if (i, j) ∈ �,

0, otherwise,
(11)

where � ⊂ [1, D] × [1, T ] is the set containing the indices
of the observed (available) entries inM. By incorporatingW
inside the �q -norm term in (10) as a multiplicative weight
matrix for E, we arrive at the following problem.

min
N,L,E

‖N‖p
Sp

+ λ ‖W ◦ E‖qq s.t.

{
M = L + E

N = H(L)

}
. (12)

Remark Note that the choice of the Hankel map H(·)
depends on the application (see Sects. 2.2, 5). In any case, the
Hankel matrix HD,1, j,k(L) ∈ R

(M=Dj)×(N=k) is computed
according to (1); the number of blocks along the row and
column dimension j and k, respectively, are set to j = r + 1
and T −r , where T is the number of observations and r > n,
with n denoting the system order.

4 Algorithmic Frameworks

In this section, the proposed Alternating-Directions Method
of Multipliers (ADMM)-based (Bertsekas 2014) solver is
described along its scalable version.
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4.1 Alternating-Direction Method-Based Algorithm

The ADMM is employed to solve (12). To this end, the aug-
mented Lagrangian function for (12) is defined as follows.

L(V,Y, μ) = ‖N‖p
Sp

+ λ ‖W ◦ E‖qq
+ 〈M − L − E,�1〉 + 〈N − H(L),�2〉
+ μ

2

(
‖M − L − E‖2F + ‖N − H(L)‖2F

)
,

(13)

where μ is a positive parameter and V := {N ∈ R
M×N ,L ∈

R
D×T ,E ∈ R

D×T }, Y := {�1 ∈ R
D×T ,�2 ∈ R

M×N }
are the sets containing all the unknown variables and the
Lagrange multipliers for the equality constraints in (12),
respectively. Specifically, at each iteration of the proposed
ADMM-based solver, (13) is minimized with respect to each
variable inV in an alternating fashion and, subsequently, the
Lagrange multipliers in Y and the parameter μ are updated.
The iteration index is denoted herein by i . The notation
L(N,Y[i], μ[i]) is used to denote the solution stage in which
all other variables but N are kept fixed, and similarly for the
other unknown variables.

The solutions of minimization of (13) with respect to
E and N are based on the operators and Lemmas that are
introduced next. Minimizing (13) with respect to L does
not admit a closed form solution due to the presence of the
quadratic terms. Similarly to Fazel et al. (2013), to ‘cancel
out’ these termswe add a proximal term to the respective par-
tial augmented Lagrangian. The additive term is based on the
(semi-) norm ‖·‖Q0 induced by the (semi-) inner product
PTQ0P, with Q0 being the positive (semi-) definite matrix
given by

Q0 = LI − H∗H � 0, (14)

where L := min{ j, k}. As shown in Sect. 2.1,
√
L is the

upper bound of the spectral norm of the Hankel adjoint map
H∗.

Thus, given the variables V[i], the Lagrange multipliers
Y[i] and the parameter μ[i] at iteration i , the updates of the
proposed solver, summarized in Algorithm 1, are as follows.

Update the Primal Variables

E[i + 1] = argmin
E

L(E,Y[i], μ[i])

= argmin
E

λμ[i]−1 ‖W ◦ E‖qq

+1

2

∥∥∥E−
(
M−L+μ[i]−1�1[i]

)∥∥∥
2

F
(15)

N[i + 1]=argmin
N

L(N,Y[i], μ[i])

= argmin
N

μ[i]−1 ‖N‖p
Sp

+ 1

2

∥∥∥N −
(
H(L) − μ[i]−1�2[i]

)∥∥∥
2

F
(16)

L[i + 1]=argmin
L

L(L,Y[i], μ[i])+ μ[i]
2

‖L − L[i]‖2Q0

(17)

Update the Lagrange Multipliers

�1[i + 1] = �1[i] + μ[i] (M − L − E) (18)

�2[i + 1] = �2[i] + μ[i] (N − H(L)) (19)

Equation (15), which offers the update for E, is solved
based on the generalized soft thresholding operator proposed
in Nie et al. (2013) and briefly described next. Consider the
following problem.

argmin
B

α ‖B‖qq + 1

2
‖B − Z‖2F , (20)

with B ∈ R
m×n and α a positive parameter. Problem (20) is

separable with respect to the elements of B and is thereby
decomposed into m × n sub-problems of the form

min
bi j

α|bi j |q + 1

2
(bi j − zi j )

2. (21)

Let us now define h(bi j ) = α|bi j |q + 1
2 (bi j − zi j )2, c1 =

(αq(1 − q))
1

2−q and c2 = c1 + αq|c1|q−1. Equation (21)
admits an analytical solution for q ∈ (0, 1] given by

b∗
i j =

⎧
⎪⎨
⎪⎩

0 if |bi j | ≤ c2
argminbi j∈{0,ρ1} h(bi j ) if bi j > c2

argminbi j∈{0,ρ2} h(bi j ) if bi j < −c2,

(22)

whereρ1 andρ2 are the roots ofh′(bi j ) = αq|bi j |q−1sgn(bi j )
+ bi j − zi j = 0 in [c1, zi j ] and [zi j ,−c1], respectively.
The roots can easily be found by applying the iterative
Newton–Raphson root-findingmethod initialized at zi j . Sim-
ilarly to Papamakarios et al. (2014), we henceforth call the
element-wise solver (22) generalized q-shrinkage operator
and denote it by Sq

α {·}. Note that when q = 1 the afore-
mentioned operator reduces to the element-wise application
of the well-known shrinkage operator (Candès et al. 2011),
defined by

Sα{x} := sgn(x)max{|x | − α, 0}. (23)

We shall denote by Sq
(α,W){·} the operator for which ᾱ =

αwi j , with W ∈ R
m×n known, is used instead of α for the

solution of each respective bi j in (22).
The solution of (16), that is, the minimization of (13) with

respect to N, is based on the following Lemma.
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Algorithm 1 ADMM solver for (12).
Input: Data:M ∈ R

D×T .Weights:W ∈ R
D×T . Parameters: {p, q, λ}.

Definitions: H(·).
1: Set r = T + 2

d + m + 1
, j = r + 1, k = T − j + 1, M = Dj , N = k,

L = min{ j, k}, ρ = 1.05, μmax = 1010, ε1 > 0, ε2 > 0.
2: Initialize: Set L[0] = 1.1M and �1[0],�2[0] to zero matrices.

Set μ[0] = L(2λ‖M‖)−1.
3: while not converged do

4: E[i + 1] ← Sq(
λμ[i]−1,W

)
{
M − L[i] + μ[i]−1�1[i]

}
.

5: N[i + 1] ← D p
(μ[i]−1)

{(
H(L[i]) − μ[i]−1�2[i]

)}
.

6: L[i + 1] ← 1
L+1

(
H∗
(
N[i + 1] + μ[i]−1�2[i] − H(L[i])

)
+

μ[i]−1�1[i] + M − E[i + 1] + LL[i]
)
.

7: Update the Lagrange multipliers by (18), (19).
8: Update μ: μ[i + 1] = min(ρμ[i], μmax).
9: end while
Output: V = {N ∈ R

M×N ,L ∈ R
D×T ,E ∈ R

D×T }.

Lemma 1 (Nie et al. 2013) The solution of the optimization
problem

argmin
B

a ‖B‖p
Sp

+ 1

2
‖B − Z‖2F , (24)

with p ∈ (0, 1], is given by B = USS p
α {�}VS

T , where
US�VS

T = Z is the SVD of Z.

We shall denote by D p
α {·} the operator – henceforth called

generalized singular value p-shrinkage operator – that
solves (24).

Clearly, problem (17) admits a closed-form solution.
The proposed ADMM-based solver is summarized in

Algorithm 1. The latter is terminated when the following
conditions are met

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{‖M − L[i + 1] − E[i + 1]‖F
‖M‖F ,

‖N[i + 1] − H(L[i + 1])‖F
‖M‖F

}
< ε1,

max

{‖N[i + 1] − N[i]‖F
‖M‖F ,

‖L[i + 1] − L[i]‖F
‖M‖F ,

‖E[i + 1] − E[i]‖F
‖M‖F

}
< ε2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

where ε1 and ε2 are small positive parameters, or a maximum
of 1000 iterations are reached.

Computational Complexity and Convergence The cost of
each iteration in Algorithm 1 is dominated by the calculation
of the generalized singular value p-shrinkage operator in
Step 5,which involves a complexity equal to that of SVD, i.e.,
O (max{M2N , MN 2}). The generalized q-shrinkage oper-
ator, utilized in Step 4, entails linear complexity O(DT ).

Regarding the convergence of Algorithm 1, there is no
established convergence proof of the ADMM for problems
in the form of (12). Indeed, theADMM is only known to con-
verge for convex separable problems with up to two blocks
of variables (e.g., Bertsekas 2014; Candès et al. 2011). How-
ever, this is not the case even in the convex instance of (12)
(i.e., when p = q = 1), since the optimization problem
involves more than two blocks of variables. For the multi-
block separable convex problems, with three or more blocks
of variables, it is known that the original ADMM is not nec-
essarily convergent (Chen et al. 2016). On the other hand,
theoretical convergence analysis of the ADMM for non-
convex problems is rather limited,making either assumptions
on the iterates of the algorithm (Xu et al. 2012; Magnusson
et al. 2016) or dealing with special non-convex models (Li
and Pong 2015; Wang et al. 2014a, 2015), none of which
is applicable for the proposed optimization problem (12).
However, it is worth noting that the ADMM exhibits good
numerical performance in non-convex problems such as non-
negative matrix factorization (Sun and Févotte 2014), tensor
decomposition (Liavas and Sidiropoulos 2015), matrix sep-
aration (Shen et al. 2014; Papamakarios et al. 2014), matrix
completion (Xu et al. 2012), motion segmentation (Li et al.
2014), to mention but a few.

To the best of our knowledge, the onlyworkwhich focuses
on the convergence analysis of the ADMMwhen applied for
the optimization of piecewise linear functions such as the
Schatten p-norm and the �q -norm (when 0 < p, q ≤ 1) is
the recent preprint of Wang et al. (2016). However, since a
systematic convergence analysis is out of the scope of this
paper, we plan to adapt the analysis in Wang et al. (2016) in
order to analyze the convergence of the proposed algorithm
in the future.

Even though we cannot theoretically guarantee the con-
vergence of the proposed solver, the experimental results
on synthetic data in Sect. 6.1 show that its numerical per-
formance is good in practice. Specifically, the empirical
convergence of the proposed solver is evidenced, where
both the primal residual and the primal objective are non-
increasing after the very few iterations (see Fig. 2). Similar
convergence behavior characterizes also the experiments on
real-world data presented in Sect. 6, where we have observed
that even the non-convex variant with p = q = 0.1 of the
proposed method (12) needs no more than 180 iterations to
converge in most cases.

4.2 Scalable Version of the Algorithm

To improve the scalability and reduce the computational com-
plexity of the ADMM-based Algorithm 1, we develop here
a scalable version. Depending on the application, and more
specifically, the number of inputs and/or outputs employed
and the number of observations, the dimension of the Han-
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Fig. 2 (Better viewed in color). Empirical convergence analysis results
for three different initializations of the proposed solver [Algorithm 1
with (p, q) = (0.5, 0.5)] illustrated for the reconstruction of synthetic
data corresponding to system order n = 6. The graphs illustrated are
plots of the value of a the Primal Objective ‖N‖p

Sp
+ λ ‖E‖qq , and b

the Primal Residual ‖M − L − E‖F of the proposed method (12),

with the iteration index. Note that M = ỹ denotes the given noisy data
and L = ŷ the reconstruction in this experiment. The different initial-
izations of the matrix L in Algorithm 1 correspond to the following
scenarios: {‘multiple’: L[0] = 1.1ỹ, ‘zeros’: L[0] = 0, ‘gaussian’:
L[0][t] ∼ N (0, 1), t = 1, 2, . . . , T (mean value over 10 repetitions)},
where T denotes the number of observations (Color figure online)

kel matrixH(L) ∈ R
M×N can rise largely, which makes the

calculation of SVD prohibitive. To alleviate the aforemen-
tioned computational complexity issue, we further impose
thatH(L) ∈ R

M×N is factorized into an orthonormal matrix
and a low-rank matrix as H(L) = QR, with Q ∈ R

M×K ,
R ∈ R

K×N and K � M, N . In this factorization, Q ∈
R

M×K is a column-orthogonal matrix satisfying QTQ = I
andR ∈ R

K×N is a low-rankmatrix representing the embed-
ding of H(L) onto the K -dimensional subspace spanned by
the columns of Q.

Due to the unitary invariance of the Schatten p-norm,
the following equality holds ‖QR‖Sp = ‖R‖Sp . Thus, by
incorporating the factorization H(L) = QR and adding the
orthonormality constraint for Q, (12) is written as

min
R,L,E,Q

‖R‖p
Sp

+ λ ‖W ◦ E‖qq

s.t.

⎧
⎨
⎩
M = L + E,

QR = H(L),

Q�Q = I.

⎫
⎬
⎭

(26)

Since MK + K N � MN , the number of variables has
been significantly reduced. Clearly, thismodification reduces
the overall complexity of the method, since the SVD is now
applied onM×K and K×N matrices as opposed to aM×N
matrix.

The ADMM is employed to solve (26). With V := {R ∈
R

K×N ,L ∈ R
D×T ,E ∈ R

D×T ,Q ∈ R
M×K } and Y :=

{�1 ∈ R
D×T ,�2 ∈ R

M×N } defined as the sets containing
all the unknown variables and the Lagrange multipliers for
the first two equality constraints in (26), respectively, the
(partial) augmented Lagrangian function is defined as

Lsc(V,Y, μ) = ‖R‖p
Sp

+ λ ‖W ◦ E‖qq
+ 〈M − L − E,�1〉 + 〈QR − H(L),�2〉
+ μ

2

(
‖M − L − E‖2F + ‖QR − H(L)‖2F

)
,

(27)

where μ is a positive parameter. Therefore, at each iteration
of the ADMM-based solver for (26), we solve

min
V

Lsc(V,Y, μ) s.t. Q�Q = I, (28)

with respect to each variable in V in an alternating fash-
ion and, subsequently, the Lagrange multipliers in Y and the
parameter μ are updated.

The proposed solver for (26) is summarized in Algo-
rithm 2. The updates for R,L,E are similar to those
employed to solve (12). The solution of (28) with respect
to Q is based on the Procrustes operator, which is defined
as P[L] = ABT for a matrix L with SVD L = A�BT and
solves the problem in the following Lemma.

Lemma 2 (Zou et al. 2006) The constrained minimization
problem:

argmin
B

‖A − B‖2F s.t. BTB = I (29)

has a closed-form solution given by P = P[A].

Computational Complexity and Convergence The cost of
each iteration in Algorithm 2 is dominated by the calcula-
tion of the generalized singular value p-shrinkage operator
and the Procrustes operator in Step 5 and 6, respectively,
which both rely on SVD, thus involving respective complex-
ities of O (max{K 2N , K N 2}) and O (max{M2K , MK 2}).
It is worth stressing again that choosing K � M, N , which
implies MK + K N � MN , leads to a significantly reduced
overall complexity forAlgorithm2 compared to that ofAlgo-
rithm 1, which is instead dominated by a SVD on a M × N
matrix, hence O (max{M2N , MN 2}). Again, the general-
ized q-shrinkage operator, utilized in Step 4, entails linear
complexity O(DT ).
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Algorithm 2 ADMM solver for (26) (scalable version).
Input: Data:M ∈ R

D×T .Weights:W ∈ R
D×T . Parameters: {p, q, λ},

number of components K . Definitions:H(·).
1: Set r = T + 2

d + m + 1
, j = r + 1, k = T − j + 1, M = Dj , N = k,

L = min{ j, k}, ρ = 1.05, μmax = 1010, ε1 > 0, ε2 > 0.
2: Initialize: Set Q[0],�1[0],�2[0] to zero matrices and L[0] =

1.1M. Set μ[0] = L(2λ‖M‖)−1.
3: while not converged do

4: E[i + 1] ← Sq(
λμ[i]−1,W

)
{
M − L[i] + μ[i]−1�1[i]

}
.

5: R[i + 1] ← D p
(μ[i]−1)

{
QT [i]

(
H(L[i]) − μ[i]−1�2[i]

)}
.

6: Q[i + 1] ← P
{(

H(L[i]) − μ[i]−1�2[i]
)
RT [i + 1]

}
.

7: L[i + 1] ← 1
L+1

(
H∗
(
Q[i + 1]R[i + 1] + μ[i]−1�2[i] −

H(L[i])
)

+ μ[i]−1�1[i] + M − E[i + 1] + LL[i]
)
.

8: Update the Lagrange multipliers by (18), (19).
9: Update μ: μ[i + 1] = min(ρμ[i], μmax).
10: end while
Output: V = {R ∈ R

K×N ,L ∈ R
D×T ,E ∈ R

D×T ,Q ∈ R
M×K }.

Regarding the convergence of Algorithm 2 which solves
the scalable version of the proposed model (26), there is no
yet established convergence proof of the ADMM for prob-
lems in the form of (26). The discussion provided above
on the convergence of Algorithm 1 applies to a large extent
for Algorithm 2 as well. As a matter of fact, theoreti-
cal analysis for the convergence of Algorithm 2 becomes
more challenging, compared to the case of Algorithm 1,
considering that the factorization QR = H(L) and the non-
linear orthonormality constraint Q�Q = I are introduced
in the scalable version of the proposed model (26). It is
also worth noting that problem (26) is always non-convex
due to these two equality constraints, and thus the solu-
tions yielded by the optimization problems (12) and (26)
cannot be related. However, it has been shown in Liu and
Yan (2012) that the ADMM converges to a local minimum
for a problem similar to problem (26) with convex objec-
tive function, i.e., p, q ≥ 1. To the best of our knowledge,
for the case 0 < p, q < 1, i.e., when the Schatten p-norm
and the �q -norm act as non-convex approximations of the
rank function and the �0-(quasi) norm, respectively, there
has been no theoretical evidence for the convergence of the
ADMM for the problem (26) and further investigation is
needed.

Nevertheless, the ADMM has been shown to achieve
good numerical performance in non-convex subspace learn-
ing problems employing a similar matrix factorization
approach with one of the factors being orthonormal (Sag-
onas et al. 2014; Papamakarios et al. 2014). Also, exper-
imental results on synthetic data evidence the empirical
convergence of Algorithm 2, which has been found to be
similar to that shown for Algorithm 1 (p = q = 0.5)

in Fig. 2. Good numerical performance is also achieved
by the scalable solver in the experiments presented in
Sect. 6.

5 Dynamic Behavior Analysis Frameworks based
on Hankel Structured Rank Minimization

In this section, we develop two frameworks for dynamic
behavior analysis.

5.1 Dynamic Behavior Prediction

Consider the case where continuous-time, real-valued anno-
tations characterizing dynamic behavior or affect (e.g., con-
flict, valence, arousal), manifested in a video sequence of T
frames, are available for a number of consecutive frames t =
0, 1, . . . , Ttrain − 1 (training set). The goal herein is to first
learn a low-order LTI system that generates the annotations
as outputs Y = [y0, y1, . . . , yTtrain−1] ∈ R

m×Ttrain when
visual features act as inputs U = [u0,u1, . . . ,uTtrain−1] ∈
R
d×Ttrain , and next use it to predict behaviormeasurements ŷt

for the remaining frames of the sequence t = Ttrain, . . . , T−
1 (test set), based on the respective features ut. To this end,
the following framework is proposed.

First, the proposed structured minimization problem (10)
is solved, with M = Y and the Hankel map H(·) defined
as in Sect. 2.2, to estimate the system order. Second, the
low-rank solutionH(L) is used to estimate the systemmatri-
ces Â, B̂, Ĉ, D̂ and the initial state vector x̂0 by solving a
systemof linear equations, following, for example,VanOver-
schee and De Moor (2012). Finally, test set predictions ŷ
(t = Ttrain, . . . , T − 1) for dynamic behavior are obtained
by applying the equations of the learned state-spacemodel (3)
for t = 0, 1, . . . , Ttrain − 1, with the visual features used as
inputs ut.

Applications The aforementioned framework can be used
for continuous prediction of any number or type of real-
valued behavioral attributes manifested in a video sequence,
by employing a portion of consecutive frames (even a few
seconds) to learn a LTI system as described above (see
Sect. 6).

5.2 Dynamic Behavior Prediction with Partially Missing
Outputs

Consider now the scenario in which the goal is to predict
missing (or unreliable) and not necessarily consecutive real-
valued measurements of dynamic behavior or affect, viewed
as missing outputs ȳt of a low-order LTI system, directly by
employing the observed visual features as inputs ut and the
available annotations as outputs yt, without explicitly learn-
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ing the system. Herein, we approach this task as a (Hankel)
structured low-rank matrix completion problem and address
it by means of the following predictive framework that is
based on the proposed model (12).

Let Y = [y0, y1, . . . , yT−1] ∈ R
m×T and U =

[u0,u1, . . . , yT−1] ∈ R
m×T be the matrices containing

all T observations (available and missing) of inputs and

outputs, respectively, and let M =
[
Y
U

]
∈ R

D×T and

H(M) = HD,1,r+1,T−r

([
Y
U

])
, with D = m + d. Let

also � ⊂ [1, D] × [1, T ] be the set containing the indices
of the observed (available) entries in M. When outputs are
noisy, the following property holds only approximately (Van
Overschee and DeMoor 2012), under the assumption of per-
sistently exciting inputs.

rank (H(M)) = n + rank (H(U)) . (30)

Thus, a low-rank approximation ofH(M) should be obtained
to estimate the true order of the system n.

To this end, the proposed model (12) is solved, with
M defined as above and W computed according to (11).
Note that this process simultaneously ‘completes’ the miss-
ing observations of M, by forcing the approximation of
H(M) to be low-rank, or in other words, the ‘completed’
trajectory L to follow the same linear dynamics underly-
ing the observed trajectory M. Finally, the missing outputs
are recovered from the respective entries of the low-rank
approximationH(L). Notably, this framework has the advan-
tage that the missing observations are obtained directly by
solving (12), thus avoiding the computational load asso-
ciated with learning a minimum order realization of the
system.

Applications The aforementioned framework can achieve
prediction of missing (past or future) observations pertain-
ing to dynamic human behavior or affect, with the latter
used as outputs of a low-order LTI system. For instance, a
computer vision problem that can be addressed by means of
the proposed framework is the problem of tracklet match-
ing (Ding et al. 2007a, 2008; Dicle et al. 2013), which
consists of stitching trajectories of detections belonging to
the same target. For this task, one needs to assess whether
the joint trajectory of detections M = [

YstartȲinterYend
]
,

where Ystart and Yend are the observed trajectories and
Ȳinter is a zero-valued matrix corresponding to the ‘miss-
ing’ intermediate trajectory, is the output of the same
autonomous (output-only) LTI system that generated Ystart

and Yend. This is achieved by solving (12) for Ȳinter,
with M defined as above, and subsequently comparing
rank(H(L)) with rank(H(Ystart)) and rank(H(Yend)) (see
Sect. 6.4).

6 Experiments

The efficiency of the proposed structured rank minimization
methods is evaluated on synthetic data corrupted by sparse,
non-Gaussian noise (Sect. 6.1), as well as on real-world
data with applications to: (i) conflict intensity prediction
(Sect. 6.2), (ii) valence–arousal prediction (Sect. 6.3), and
(iii) tracklet matching (Sect. 6.4). For the case of dynamic
behavior analysis experiments on real-world data, for the first
two tasks, the framework described in Sect. 5.1 is employed,
while for the last we utilize the framework described in
Sect. 5.2.

Aside from the proposed methods, five structured mini-
mization methods are also examined, namely HRM2 (Fazel
et al. 2013), SVD-free (Signoretto et al. 2013), SRPCA (Aya-
zoglu et al. 2012), IHTLS (Dicle et al. 2013), and SLRA
(Markovsky 2014) (see further details on these methods in
Table 1). For all experiments presented in our paper, a grid
search is employed to tune the parameter λ of the proposed
methods or any other parameters of the compared methods
that need tuning. Tuning is performed by following an out-
of-sample evaluation, that is, the last portion of the training
frames is withheld for validation and the best-performing
model is used for testing. Specifically, the last 2r training
observations, with r defined in Sect. 3, are kept out for vali-
dation in all our experiments.

6.1 Experiment on Synthetic Data

In the experiments presented in this section, the efficiency of
the proposed method (12) is evaluated on synthetic data cor-
rupted with sparse, non-Gaussian noise. In order to generate
Hankel matrices of given rank n, we follow the methodology
proposed in Park et al. (1999), that is, T outputs y(t) of an
autonomous stable LTI system of order n are generated by
applying the following formula

y(t) =
n∑

k=1

ztk, t = 1, 2, . . . , T, (31)

where zk appear in pairs of conjugate numbers so that the
observations y(t) are real numbers. It follows naturally that
a M × N Hankel matrix Y = H(y) = H1,1,M,N (y) with
y derived according to (31) has rank equal to n (Park et al.
1999). Subsequently, sparse, non-Gaussian noise η ∈ R

1×T

is added to the original signal y, with the non-zero entries
following the Bernoulli model with probability ρ = 0.2, as
in Candès et al. (2011). The final corrupted signal is formed
as ỹ = y + η, with the corresponding noisy Hankel matrix
Ỹ = H(ỹ) being full-rank.

2 The Dual AGP algorithm in Fazel et al. (2013) is used.
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In what follows, the efficiency of various structured rank
minimization methods in reconstructing the noiseless sys-
tem outputs y(t), t = 1, 2, . . . , T , by finding a low-rank
approximation Ŷ = H(ŷ) given the noisy Hankel matrix Ỹ,
is experimentally assessed in various scenarios.

The reconstruction error, for both the noiseless observa-
tions y and the noise η, is measured in terms of relative
reconstruction error as follows.

err(s, ŝ) = ‖s − ŝ‖
‖s‖ , (32)

with s denoting the original signal and ŝ denoting the esti-
mated signal by the algorithm.

Experiment with Varying System Orders Herein, experi-
ments are conducted for various orders of the LTI system
generating the ‘clean’ data, as described above. Specifi-
cally, the system order n is varied in {6, 12, 18}. For each
value of n the experiment is repeated 10 times, that is, for
10 different output trajectories y ∈ R

1×T computed by
randomly selecting the complex coefficients in (31). For
the proposed model, Algorithm 1 is used and the follow-
ing combinations are examined for the p and q values
corresponding to the Schatten p- and �q -norm, respec-
tively: (p, q) ∈ {(1, 1), (0.9, 0.9), (0.5, 0.5), (0.1, 0.1)}.
The methods HRM, SVD-free, SRPCA, IHTLS, and SLRA
(listed in Table 1) are also evaluated for comparison. For each
method, results are reported in terms ofminimum reconstruc-
tion error err(y, ŷ) computed according to (32). Performance
is also evaluated in terms of reconstruction error for the
noise signal err(η, η̂) and the Pearson Correlation Coeffi-
cient (COR) measured between the noiseless observations y
and the reconstructed outputs ŷ.

Table 2a–c contain the results obtained by the various
methods for system order n = 6, n = 12 and n = 18,
respectively. Specifically, mean and standard deviation val-
ues of the reconstruction errors err(y, ŷ) and err(η, η̂) and the
COR values computed over the 10 trials of each experiment
are reported. The mean values of the estimated system order
(rank of Ŷ = H(ŷ)), number of iterations and execution time
are also reported.

Firstly, we observe that the non-convex instances of the
proposed method, i.e., when p, q < 1, consistently account
for the most accurate reconstruction of both the clean sig-
nal, in terms of both reconstruction error and correlation,
as well as the recovery of the sparse noise. In most cases,
the performance is improved when smaller values for p
and q are chosen for the proposed model. Secondly, all the
compared methods (HRM, SVD-free, SRPCA, IHTLS and
SLRA) achieve much lower performance in terms of all the
three metrics employed. Furthermore, it is worth noting that,
in the scenarios corresponding to orders n = 12 and n = 18,

SRPCA recovers the noise more accurately than the HRM,
SVD-free, IHTLS and SLRA. This is expected since the for-
mer is the only method amongst the compared ones that is
robust to sparse, non-Gaussian noise. It is also worth men-
tioning that the system order pertaining to the recovered
observations varies significantly amongst different methods.
Amongst the different instances of the proposed method,
this variation is much smaller, with the only exception being
the result obtained by our method with (p, q) = (0.1, 0.1)
for the case n = 12. Regarding the number of iterations,
which varies largely across methods, we observe that the
non-convex instances of the proposedmethod require a larger
amount of iterations to converge, as compared to the con-
vex instance (p = q = 1). However, even in the scenario
of order n = 18, the best-performing instance of the pro-
posed method (p = q = 0.1) needs 223 iterations in average
to converge. Finally, the execution times corresponding to
the best-performing, non-convex instances of the proposed
method in all three experiments are comparable to those
accounted for by even convex compared methods, such as
SRPCA.

Empirical Convergence Analysis In this experiment, the
convergence of the proposed method is assessed by employ-
ing various types of initialization. To this end, we employ
synthetic data corrupted with sparse, non-Gaussian noise,
generated similarly to the previous experiment. We clar-
ify here that the only variable that needs to be initialized
in Algorithm 1, except for the Lagrange multipliers, is
the matrix L. All other variables are calculated in the 1st
iteration of the ADMM loop according to the respective
updates.

The proposed solver is executed using the following three
types of initialization, namely, ‘original signal’:L[0] = 1.1ỹ,
‘zeros’: L[0] = 0, ‘gaussian’: L[0][t] ∼ N (0, 1), t =
1, 2, . . . , T , where ỹ denote the noisy system outputs con-
structed as in the previous experiments andN (0, 1) denotes
the normal distribution. For each type of initialization,
the values of the primal objective (‖N‖p

Sp
+ λ ‖E‖qq ) and

the primal residual (‖M − L − E‖F ) of the proposed
model (12) are plotted as a function of the iteration index
in Fig. 2. Here M = ỹ denotes the given noisy data
and L = ŷ the reconstruction. These plots enable us to
demonstrate the convergence of the proposed solver. Note
that for the last initialization scenario, the experiment is
repeated 10 times. and the average convergence curve is plot-
ted.

By inspecting both graphs, it is evident that all three ini-
tializations lead to similar convergence behavior in the sense
that both the primal objective and the primal residual are
non-increasing after the first few iterations. However, by ini-
tializing the algorithm using the scaled version of the original
signal (L[0] = 1.1ỹ) the primal objective attains smaller val-
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Table 2 Recovery results obtained by the proposed method and the compared methods corresponding to system order (a) n = 6, (b) n = 12 and
(c) n = 18

Method err (y, ŷ) err (η, η̂) COR Order Iter Time

(a) System order n = 6

HRM 0.630 (0.161) 0.259 (0.119) 0.773 (0.145) 8 (2.3) 49 ( 32) 0.008 ( 0.005)

SVD-free 0.894 (0.181) 0.365 (0.167) 0.809 (0.169) 1 (0.4) 905 (301) 0.448 (0.162)

SRPCA 0.922 (0.142) 0.372 (0.137 ) 0.677 (0.492) 7 (2.1) 101 (16) 0.030 (0.004)

IHTLS 0.629 (0.301) 0.267 (0.177) 0.810 (0.203) 2 (0.5) 41 (42) 0.011 (0.011)

SLRA 0.612 (0.292) 1.094 (0.085) 0.816 (0.190) 1 (0.5) 33 (23) 0.002 (0.002)

ours (p = 1, q = 1) 0.395 (0.218 ) 0.173 (0.137) 0.900 (0.093) 6 (2.2) 90 (10) 0.016 (0.002)

ours (p = 0.9, q = 0.9) 0.313 (0.232) 0.141 (0.136) 0.926 (0.079) 5 (3.2) 130 (17) 0.026 (0.003)

ours (p = 0.5, q = 0.5) 0.299 (0.220) 0.129 (0.141) 0.933 (0.066) 6 (2.7) 215 (90) 0.047 (0.014)

ours (p = 0.1, q = 0.1) 0.233 (0.218) 0.107 (0.132) 0.952 (0.061) 5 (1.8) 217 (19) 0.043 (0.004)

(b) System order n = 12

HRM 0.692 (0.234 ) 0.205 (0.097) 0.637 (0.352) 10 (7.5) 57 (31) 0.022 (0.012)

SVD-free 0.942 (0.104) 0.273 (0.077) 0.634 (0.343) 2 (0.7) 703 (478 ) 0.544 (0.378)

SRPCA 0.655 (0.211) 0.181 (0.051) 0.848 (0.167) 6 (2.6) 102 (7) 0.064 (0.004)

IHTLS 0.719 (0.299) 0.217 (0.120) 0.616 (0.35)9 1 (0.5) 50 (43) 0.042 (0.030)

SLRA 0.832 (0.355) 1.071 (0.060) 0.416 (0.500) 1 (0.4) 58 (40) 0.006 (0.005)

ours (p = 1, q = 1) 0.414 (0.333) 0.120 (0.096) 0.813 (0.278) 6 (3.1) 107 (4) 0.042 (0.002)

ours (p = 0.9, q = 0.9) 0.365 (0.338) 0.103 (0.097) 0.856 (0.213) 6 (1.8) 148 (8) 0.063 (0.004)

ours (p = 0.5, q = 0.5) 0.333 (0.363) 0.094 (0.105) 0.863 (0.199) 5 (2.2) 210 (24) 0.089 (0.011)

ours (p = 0.1, q = 0.1) 0.341 (0.298) 0.111 (0.094) 0.859 (0.250) 13 (3.0) 181 (91) 0.088 (0.047)

(c) System order n = 18

HRM 0.780 (0.238) 0.216 (0.108) 0.483 (0.364) 8 (8.9) 87 (39) 0.063 (0.031)

SVD-free 0.889 (0.203) 0.242 (0.107) 0.567 (0.301) 1 (0.5) 619 (493) 0.789 (0.648)

SRPCA 0.626 (0.238) 0.160 (0.065) 0.752 (0.247) 8 (3.7) 107 (10) 0.127 (0.023)

IHTLS 0.945 (0.309) 0.247 (0.093) 0.479 (0.390) 2 (1.6) 41 ( 36) 0.082 (0.056 )

SLRA 0.958 (0.263) 1.082 (0.057) 0.471 (0.354) 2 (3.1) 65 (39) 0.012 (0.009)

ours (p = 1, q = 1) 0.572 (0.312) 0.151 (0.088) 0.723 (0.269) 6 (4.7) 108 (10) 0.076 (0.009)

ours (p = 0.9, q = 0.9) 0.552 (0.322) 0.144 (0.087) 0.736 (0.273) 6 (3.0) 154 (8) 0.133 (0.028)

ours (p = 0.5, q = 0.5) 0.534 (0.327) 0.141 (0.088) 0.739 (0.239) 6 (3.0) 154 (8) 0.133 (0.028)

ours (p = 0.1, q = 0.1) 0.524 (0.346) 0.135 (0.091) 0.744 (0.241) 6 (4.1) 223 (9) 0.171 (0.021)

The bold values indicate the best performances in terms of each evaluation metric
Results are reported in terms of mean values over 10 repetitions of the experiment, while standard deviation values are reported inside parentheses

ues than the other two types of initialization. This justifies
our choice of initialization as L[0] = 1.1ỹ in the proposed
algorithms.

6.2 Conflict Intensity Prediction

In this section, we address the problem of continuous con-
flict intensity prediction based on the visual modality only.
Conflict is usually defined as disagreement of high inten-
sity or escalation, in which at least one of the involved
interlocutors feels emotionally offended (Bousmalis et al.
2009). Hence, various challenges are posed to machine anal-
ysis of conflict in real-world competitive conversations, since
simultaneous processing of the data streams from all inter-

actants is required. Furthermore, when the visual modality
is also considered, feature extraction has to cope with vari-
ous types of visual noise, such as extreme head pose values
and abrupt body movements, which renders computer vision
pre-processing (e.g., tracking, alignment) rather difficult.

Automated approaches to conflict analysis include just a
few works, which are based on audio features only (Kim
et al. 2012a, b). However, visual features can help discover
facial behavioral cues that are intrinsically correlated with
conflict, such as smiling, blinking, head nodding, flouncing
and frowning. The only audio-visual approach to conflict
detection that we are aware of is Panagakis et al. (2016),
where robust, multi-modal fusion of audio-visual cues is uti-
lized. However, all works mentioned above address conflict
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Fig. 3 Three sample snapshots from the CONFER dataset, corresponding to dyadic conversations of two guests in conflict

or conflict escalation detection within a classification frame-
work predicting binary (conflict/non-conflict) or discretized
conflict intensity labels.

To the best of our knowledge, the presented experiments
constitute the first work that (i) addresses continuous conflict
intensity prediction through a dynamic modeling framework
(as opposed to frame-by-frame classification or regression),
and (ii) uses visual features only.

Data In view of the absence of benchmark datasets for con-
flict detection, video excerpts from live political debates,
aired on Greek television3 in between 2011 and 2012, are
utilized. It is worth stressing that these debates, despite being
moderated by the TV host, include unscripted dyadic interac-
tions which are highly likely to lead to real conflict due to the
participants acting under incompatible motives and interests.
From the entire dataset, 160 audio-visual non-overlapping
recordings with total duration amounting to 170 mins, have
been manually extracted. These videos have been annotated
by 10 experts, all of them being native Greek speakers, in
terms of continuous conflict intensity. The temporal resolu-
tion of the video stream is 25 frames per second. Only the
episodes involving exactly two interlocutors (97 out of 160
samples) are considered herein. For each sequence, the mean
over the 10 available ratings, normalized to [0, 1], is used as
ground truth for conflict intensity. Three sample snapshots
from the dataset, henceforth called Conflict Escalation Res-
olution Database (CONFER), are depicted in Fig. 3.

Features and Experimental Protocol For visual feature
extraction,we use theGauss-NewtonDeformable PartModel
in Tzimiropoulos and Pantic (2013) for facial landmark
detection, which when combined with a person-specific face
detector produces very accurate results (Chrysos et al. 2015),
to detect 49 fiducial facial points in each frame of an input
video for each of the two interactants. The points are sub-
sequently globally registered, using a 2-D non-reflective
similarity transformation with respect to 4 reference points
(centers of the eyes, center of the nose and top of the nose),

3 http://www.megatv.com/anatropi/.

to remove the effects of head translation, scale and in-plane
rotation. This way, yaw and pitch pose angles, which are
expected to be informative in terms of conflict, are retained in
the shape configuration. Finally, Principal Component Anal-
ysis (PCA) is used at each frame to reduce dimensionality
for the points of each speaker to 7, based on the components
collectively accounting for 98% of the total variance.

The dynamic behavior prediction framework described
in Sect. 5.1 is applied separately for each sequence used in
the experiments of this section. During training, the stacked
feature vectors corresponding to the two interlocutors are
used as inputs ut at each time frame t of the training set
(t ∈ [0, Ttrain − 1]), while the ground truth is used as output
yt of aLTI system.Thegoal is to predict the output ŷt (conflict
intensity) for each frame of the sequence (t ∈ [0, T − 1]),
based on the learned system parameters and the respective
inputs (features).

We establish an experimental scenario involving complete
input-output data. To this end, 43 non-overlapping segments
have been extracted from the 97 available episodes, based
on the following conditions: (i) they are at least 400 frames
long, so that the predictive capability of the proposed frame-
work can be evaluated on long temporal segments portraying
frequent conflict intensity fluctuations and conflict escala-
tion/resolution, and (ii) the face detection for each frame is
successful and, hence, the facial landmark detection results
for each frame are accurate (see Chrysos et al. 2015, for fur-
ther explanation).

The resulting subset of clips has amean and standard devi-
ation of duration of 804 frames and 561 frames, respectively,
and corresponds to 22 subjects. For each of the 43 video
sequences, the first P = 60% of the frames are used for
training,while the remaining frames are used for testing. This
choice establishes a subjects-dependent experimental setting.
It is worth mentioning that the experimental setting is chal-
lenging given that the proposed framework learns temporal
behavioral patterns related to conflict escalation/resolution
from a single dyadic interaction with average duration of
about 19 seconds. This is in contrast to relying on a large set
of training instances containingmultiple interactants exhibit-
ing conflicting behavior in various contexts.
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For the proposed model (12), the following combina-
tions are examined for the p and q values corresponding
to the Schatten p- and �q -norm, respectively: (p, q) ∈
{(1, 2), (1, 1), (0.9, 0.9), (0.5, 0.5), (0.1, 0.1)}. The scalable
Algorithm 2 is also used for this experiment, with the dimen-
sion of the column space of Q in (26) set to K = 10. The
convergence parameters ε1 and ε2 are set to 10−4 and 10−7,
respectively. For each sequence, 150 values, logarithmically
spaced in the interval [10−3, 1] are examined for the tuning
of parameter λ in Algorithms 1 and 2. Similarly, a suitable
grid search is conducted to tune the parameters of the com-
paredmethods. For details onmethods to whichwe compare,
see Table 1.

For evaluation, the PearsonCorrelationCoefficient (COR)
is used, measured between the ground truth yt (mean over
the 10 annotations) and the predicted output ŷt on the test set
frames (t ∈ [Ttrain, T − 1]) of each sequence. Motivated
by recent works on predictive analysis of human behav-
ior (Mavadati et al. 2013; Kaltwang et al. 2016), we choose
to also report the Intra-Class Correlation Coefficient (ICC),
which was first proposed in Shrout and Fleiss (1979) as
a metric to assess rater reliability in behavioral measure-
ments. Specifically, the coefficient ICC(3,1) is employed
herein, that corresponds to the case “Each target is rated
by each of the same k judges, who are the only judges of
interest” (Shrout and Fleiss 1979). For each sequence and
method, the ICC(3,1) (henceforth denoted by ICC) is calcu-
lated by considering the ‘method’ and the ‘mean annotator’
as the only ‘judges’ of interest and the conflict intensity val-
ues for the test set frames as ‘targets’ in the definition above.
To obtain a ‘human’ baseline ICC result, i.e., a measure of
‘level of consistency amongst 10 humans in measuring con-
flict intensity’, we also compute the ICC amongst the 10
annotations for the test frames of each sequence. The aver-
age value of the inter-annotator ICC, denoted by ICCh , over
all 43 sequences, was found ICCh = 0.740. Finally, note that
each method is separately optimized in terms of each metric.

Results and Discussion Results in terms of mean value of
COR and ICC over all 43 sequences are reported in Table 3
for all methods examined. For details on methods to which
we compare, see Table 1. The values of the resulting LTI
system order and execution time (time: secs per frame ×
100) for the respective best-performing structured rank min-
imization solution are also reported, again averaged over all
sequences.4 As can be seen, the proposed methods outper-
form all methods that are compared to, in terms of both COR
and ICC. The second-best-performing method in terms of
both metrics is IHTLS, with all remaining methods yielding
lower scores. Results obtained by the scalable Algorithm 2

4 The order and time values reported correspond to the COR-optimized
methods.

Table 3 Conflict intensity prediction results in terms of COR and ICC,
averaged over all 43 sequences used from the CONFER dataset

Method Order Time COR ICC

HRM 12 0.08 0.630 0.748

SVD-free 3 0.02 0.005 0.492

SRPCA 14 1.12 0.491 0.721

IHTLS 6 7.77 0.724 0.775

SLRA 7 1.34 0.637 0.708

ours (p = 1, q = 2) 4 0.22 0.565 0.762

ours (p = 1, q = 1) 5 0.26 0.771 0.817

ours (p = 0.9, q = 0.9) 6 0.35 0.800 0.824

ours (p = 0.5, q = 0.5) 7 0.59 0.805 0.811

ours (p = 0.1, q = 0.1) 9 0.70 0.801 0.822

ourssc (p = 1, q = 2) 4 0.19 0.671 0.772

ourssc (p = 1, q = 1) 5 0.26 0.789 0.813

ourssc (p = 0.9, q = 0.9) 6 0.34 0.788 0.827

ourssc (p = 0.5, q = 0.5) 5 0.68 0.781 0.815

ourssc (p = 0.1, q = 0.1) 5 0.83 0.806 0.833

The bold values indicate the best performances in terms of each evalu-
ation metric
Averaged values for the resulting systemorder and execution time (time:
secs per frame × 100) are also shown for each (COR-optimized) struc-
tured rank minimization method. For details on methods to which we
compare, see Table 1

(denoted by ourssc) are on par with those yielded by Algo-
rithm 1. As a matter of fact, the best overall performance in
terms of both metrics is achieved by the scalable algorithm
with p = q = 0.1. Furthermore, the proposed methods (12)
and (26) yield superior performancewhen the objective func-
tion is non-convex (p, q < 1), as compared to that obtained
by convex instances of (12) and instances of (26) with con-
vex objective function (p, q = 1 and p = 1, q = 2).
These results indicate that the dynamic model learned with
the non-convex instances explain better the observed data
thus providing a better estimate for the system order than that
learned with the convex instances. This may be attributed to
the relaxation gap entailed by replacing the rank and �0-norm
with the Schatten p- and �q -norm, respectively, is tighter than
that entailed by convex approximations. Also, it is interest-
ing to observe that the choice q = 2, which corresponds to a
Frobenius-norm based fittingmeasure, consistently results in
the lowest performance amongst the values examined for the
�q -norm. Presumably, this is due to the susceptibility of the
corresponding fitting measures to gross, sparse noise (Huber
2011).

Regarding run time efficiency, it is worth noting that the
execution time accounted for by the best-performing vari-
ant of the proposed methods (ourssc with p = q = 0.1)
is close to a degree of magnitude smaller than that of the
best-performing out of the compared methods (IHTLS). As
expected, execution time increases as p and q values move
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closer to zero. Moreover, the high COR and ICC scores
achieved by the proposed methods are accompanied by low
values for the resulting system orders (e.g., n ∈ [4, 6] for
ourssc). This property is crucial for both the generalizabil-
ity and execution time efficiency of the overall predictive
framework.

Notably, IHTLS, HRM and the proposed methods lead
to an average ICC which is higher than the mean inter-
annotator ICCh of 0.740. This means that these methods,
which were trained using the ‘mean annotator’ annotations,
have learned the trend of the ‘mean annotator’ exception-
ally well and were able to reproduce the trend accurately.
This clearly demonstrates the suitability of these methods
for modeling the human behavior analysis task at hand (i.e.,
conflict intensity prediction).

Effect of the Training Set Size on Prediction Accuracy The
results reported in Table 3 correspond to using the first P =
60% of each sequence’s frames for training (structured rank
minimization and LTI system learning) and the remaining
frames for predicting the respective conflict intensity values.
To investigate how the choice of the portionof frames used for
training affects the predictive capability of the structured rank
minimization-based framework, we vary the training set per-
centage P in {30%, 40%, 50%, 60%, 70%} of the sequence
length. The test set percentages vary also according to 100-
P . The resulting training (test) set sizes, averaged over all 43
sequences, are 240, 322, 402, 483, 563 (559, 482, 401, 321,
241) frames, respectively. For this experiment, the proposed
method with p = q = 0.1 is examined along with the same
five compared methods, while performance is evaluated in
terms of the COR metric only. For details on methods to
which we compare, see Table 1.

A graph that shows the COR values (averaged over all
sequences) obtained for each percentage P by the vari-
ous methods5 is illustrated in Fig. 4. The proposed method
consistently outperforms the compared methods in all five
scenarios. The second-best-performing method is SLRA and
IHTLS for P in {30%, 40%, 50%} and P in {60%, 70%},
respectively. The superiority of the proposed method over
the compared methods for this experiment is more evident
in the cases where 30 or 40% of the frames are used for
training; the discrepancy in performance achieved by the
proposed method and SLRA reaches 0.117 and 0.126 in
absolute COR terms, respectively. Overall, in most of the
cases, a higher COR value is achieved by all methods when
more data are used for training. For our method, the obtained
COR values increase strictlymonotonically with P , reaching
COR = 0.834 at P = 70%.

5 COR values obtained by the SVD-free method are omitted from this
discussion, as they were much lower compared to the other methods.

Fig. 4 Average correlation (COR) values plotted as a function of the
training set percentage, for the conflict intensity prediction experi-
ment on the CONFER dataset with varying training size. For details
on methods to which we compare, see Table 1. Results for the proposed
method (12) were obtained by using Algorithm 1 with p = q = 0.1

In Fig. 5, conflict intensity predictions, as obtained by
the proposed method ((p, q) ∈ {(1, 1), (0.1, 0.1)}), HRM,
IHTLS and SRPCA for a sequence of the CONFER dataset,
are illustrated along with the ground truth annotations as
line plots for the various training set percentages examined.
The COR values obtained are also shown in the respec-
tive sub-captions. As can be seen, the sequence in question
establishes a challenging scenario, since it involves instances
of both conflict escalation and resolution, either short- or
long-term. One can easily notice that for all scenarios the
trends of conflict intensity along the test frames are accu-
rately predicted by the non-convex instance of the proposed
method (p = q = 0.1), while the convex model instance
(p = q = 1) yields smaller COR values in all five cases
examined. The former achieves a COR value as high as 0.914
(Fig. 5f) for a total of 604 test frames when trained on just
the first 30% of the sequence (260 frames). In the same sce-
nario, IHTLS performs similarly, while other methods such
as HRM and SRPCA yield COR values that lie just above
or below zero, respectively. The various compared methods
exhibit different patterns in performance as the amount of
video frames used for training increases. For instance, IHTLS
outperforms the other methods when less training data are
used (30 and 40%), while SRPCA and HRM show a dra-
matic increase in performance at the point where 50 and
60% of the video frames are employed for training, respec-
tively. The effectiveness of IHTLS in the scenarios involving
less training data for the sequence in question is as expected.
IHTLS is more likely to find a local approximation for the
‘low-complexity’ temporal dynamics of the first portion of
the sequence that be low-rank and hence a simpler, more
generalizable system than the convex, nuclear-norm based
methods SRPCA and HRM, since the former searches for
the desired rank iteratively starting from rank 1 (Dicle et al.
2013). Finally, as expected, the highest COR values obtained
overall correspond to the highest training percentage of 70%
and are similar across all methods.
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Fig. 5 (Better viewed in color). Conflict intensity prediction results for
a single sequence of the CONFER dataset, as produced by the proposed
method ((p, q) ∈ {(1, 1), (0.1, 0.1)}), HRM, IHTLS and SRPCA for
different portions of frames used for training (reported as percentages in
the sub-captions alongwith the respectiveCOR). For details onmethods

to which we compare, see Table 1. In each graph, the curve designated
by ‘yid’ (‘yv’) corresponds to the training (test) predictions, while the
third, solid-line curve corresponds to the ground truth annotations (mean
over 10 ratings). The test set predictions have been normalized to the
range [0,1] for better visualization (Color figure online)
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Fig. 6 Example images from the SEMAINE database portraying three subjects from Session 46 (left), 82 (middle), and 94 (right)

6.3 Valence and Arousal Prediction

In this section, the efficiency of the proposed dynamic
behavior analysis framework is validated on the problem of
continuous prediction of valence and arousal based on visual
features only. Motivated by advances in psychology and cog-
nitive neuroscience (Russell 1980; Lane and Nadel 2002),
focus of affective computing research has recently shifted
towards continuous-time analysis of affect phenomena, rep-
resented in the dimensional space (e.g., valence, arousal,
power, anticipation) rather than in terms of universal basic
emotions (e.g., happiness, surprise) (Gunes and Schuller
2013; Gunes et al. 2011). Valence (how positive or negative
the affect is) and Arousal (how excited or apathetic the affect
is) are latent dimensions used to measure emotional expe-
rience, and are considered to encapsulate most of the affect
variance (Lane and Nadel 2002).

Most of the existing automated approaches to Valence–
Arousal (V–A) analysis have been limited to the use of audio
cues only or have compromised to solving a two-class or four-
class classification problem, i.e., binary classification with
respect to each dimension or classification into the quadrants
of the 2D V–A space (Gunes and Schuller 2013). Although
the relation of affective dimensions (mostly arousal) to
certain acoustic features has been better documented as com-
pared to visual cues, yet there has been evidence that also
visual signals (e.g., facial expressions, head shakes, nods)
are informative of the V–A dimensions (Cowie et al. 2010;
Pantic and Bartlett 2007). Such findings have motivated the
exploitation of visual features, such as facial expression cues
and shoulder movements, in either isolation or combination
with audio features, for dimensional affect analysis. Repre-
sentative examples of this line of research are the works of
Gunes et al. (2011), Nicolaou et al. (2012) and Kaltwang
et al. (2016).

In this paper, we address continuous prediction of valence
and arousal using visual features only.Motivated by evidence
suggesting that valence and arousal exhibit high correla-
tion (Pantic and Bartlett 2007), we treat them in a joint
framework, that is, as outputs generated by the same LTI
system.

Data The SEMAINE database (McKeown et al. 2012),
which contains audio-visual recordings of emotionally col-
ored conversations between a human and an operator, is
employed. The operator plays the role of an avatar and,
depending on the choice of the latter, acts assuming one
of 4 distinct personalities (happy, gloomy, angry or prag-
matic). Since the goal of the operator is to elicit emotional
reactions by the user, naturalistic dyadic conversations are
developed, which are suitable for spontaneous affect analy-
sis. Each video has been recorded at 50 frames per second,
and has been annotated frame by frame by six raters in terms
of real-valued valence and arousal ranging from −1 to 1. A
subset of SEMAINE, containing 40 sequences that are at least
3000 frames (∼1min) long froma total of 10 subjects, is used.
For each sequence, the mean values of valence and arousal
annotations over the six ratings are utilized as ground truth.
Three sample video frames corresponding to three different
users from the SEMAINE database are depicted in Fig. 6.

Features and Experimental Protocol The Active Appear-
ance Model-based tracker (Orozco et al. 2013), which per-
forms simultaneous tracking of 3Dhead pose, lips, eyebrows,
eyelids and irises in videos, is employed to extract facial
features. For each frame, 113 2D characteristic facial land-
marks are obtained. To ensure that only expression-related
information is retained in the feature representation, we use
the tracker’s estimates of 3D head pose values to remove
pose angles. Scale and translation effects are subsequently
removed from the 226 coordinates of the pose-normalized
points, according to the procedure described for the exper-
iment in Sect. 6.2. Finally, dimensionality reduction is
performed by means of PCA. Again, 98% of the total energy
is retained resulting to a 12-dimensional feature vector.

For each of the 40 sequences, the framework described
in Sect. 5.1 is employed for continuous valence and arousal
prediction. Only the first 3000 frames are considered for each
sequence. The experimental protocol is similar to that estab-
lished for the conflict intensity prediction experiment. The
first 2000 frames of each sequence are used for training,while
the remaining 1000 frames (∼20s) are used for V–A predic-
tion. For this experiment, the visual feature vectors are used
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Table 4 Valence (Val.) and
Arousal (Ar.) prediction results
in terms of COR and ICC,
averaged over all 40 sequences
used from the SEMAINE
dataset

Method Order Time Val. COR ICC

Val. Ar. Val. Ar. Val. Ar.

HRM 19 17 1.49 0.812 0.794 0.805 0.801

SVD-free 2 3 0.46 −0.024 0.001 0.504 0.412

SRPCA 16 21 5.95 0.771 0.743 0.774 0.765

IHTLS 10 9 121.14 0.727 0.739 0.739 0.734

SLRA 14 15 4.46 0.737 0.728 0.830 0.823

ours (p = 1, q = 2) 5 6 3.80 0.834 0.818 0.823 0.819

ours (p = 1, q = 1) 8 7 4.56 0.844 0.838 0.835 0.835

ours (p = 0.9, q = 0.9) 8 8 6.32 0.851 0.842 0.828 0.824

ours (p = 0.5, q = 0.5) 9 9 9.43 0.857 0.871 0.821 0.830

ours (p = 0.1, q = 0.1) 13 13 12.27 0.866 0.869 0.837 0.824

The bold values indicate the best performances in terms of each evaluation metric
Averaged values for the resulting system order (Val. and Ar.), and execution time (time: secs per frame×100)
(Val.) are also shown for each (COR-optimized) structured rank minimization method. For details on methods
to which we compare, see Table 1

as inputs and the V–A values are used as outputs. Predictive
performance for both valence and arousal is assessed again by
means of both COR and ICC. To facilitate the evaluation and
discussion with respect to each of the affect dimensions, we
choose to optimize each method separately for each dimen-
sion and performance metric. For the proposed method, only
Algorithm 1 is examined in this experiment. For details on
methods to which we compare, see Table 1.

The mean value over all 40 sequences of the inter-
annotator ICCh, calculated amongst the six available ratings,
was found to be ICCV

h = 0.778 for valence and ICCA
h =

0.893 for arousal, respectively. The higher inter-annotator
reliability for arousal is expected in the case of the SEMAINE
data due to the three interlinked facts: (i) the majority
of SEMAINE annotated data relate to high aroused emo-
tions, (ii) the annotators were presented with audio-visual
recordings to be annotated, and (iii) the arousal is better
recognized when audio modality is available (Scherer et al.
2010; Bänziger and Scherer 2010).

Results and Discussion Valence and arousal prediction
results, in terms of mean value of COR and ICC over all 40
SEMAINE sequences, are reported in Table 4 for all methods
examined. For details on methods to which we compare, see
Table 1. Mean values for the resulting system order and exe-
cution time (time: secs per frame ×100) are also reported.6

As can be seen, the best performance, in terms of both met-
rics, is obtained by the proposedmethod, for both valence and
arousal prediction. The second-best-performing method in
terms of COR (ICC) is HRM (SLRA) for both affect dimen-
sions. Overall, valence and arousal are predicted with similar
accuracies by almost all the methods. Again, the non-convex

6 The order and time values reported correspond to the COR-optimized
methods.

instances of the proposed method (p, q < 1) account for
significant performance boost over convex model instances
(p, q = 1 and p = 1, q = 2), yet accompanied by an
increase in model complexity and execution time. Still, in
most of the cases the proposed method results in systems
of lower-complexity, as compared to those accounted for
by the remaining methods. Regarding execution time, the
various methods achieve comparable performances, with the
exception of IHTLS that is much slower for this experiment,
probably due to the increased dimensions of the data Hankel
matrices.

Finally, it is worth noting that the inter-annotator ICCV
h

for valence is exceeded by HRM, SLRA and our method,
whereas nomethod furnishes an ICCvalue greater than ICCA

h
for arousal. This result is exactly as expected. Namely, as
explained above, in the case of the utilized SEMAINE data,
human annotators were presented with audio-visual (rather
than visual-only) recordings when they were conducting the
annotation. The presence of audio data does not affect the
human performance in recognition of valence, but it does
affect the recognition of arousal – arousal is better recognized
when audio cues are available to humans to rely on (Bänziger
and Scherer 2010). Hence, while automated methods like
HRM and our methods are highly suitable for modeling
human behavior analysis tasks at hand (i.e., valence inten-
sity prediction), they could not learn the trends of the ‘mean
annotator’ well enough for the case of arousal intensity pre-
diction, because these were relying on audio data unavailable
to the tested automated methods.

6.4 Tracklet Matching

In this section, the efficiency of the proposed method is eval-
uated on the task of tracklet matching. The goal is to identify
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targets in the visual stream across occlusions from a set of
given detections.

Data Experiments are conducted on the recently published
Similar MultiObject Tracking (SMOT) dataset (Dicle et al.
2013), which consists of 8 videos7 showing multiple targets
with identical or very similar appearance. For each video, the
provided hand-labeled detections for the targets appearing in
each frame are employed. Overall, the task is challenging due
to the presence of multiple targets, long trajectories, object
occlusions and crossings, missing data and camera motion.

Features and Experimental Protocol We follow the tracklet
matching framework proposed in Dicle et al. (2013), which
is based on a Generalized Linear Assignment (GLA) Prob-
lem. Thus, given N tracklets (trajectories of system outputs)
{Y(1),Y(2), . . . ,Y(N )}, GLA solves

max
K

N∑
i=1

N∑
j=1

pi j ki j

s.t.
N∑
i=1

ki j ≤ 1;
N∑
j=1

ki j ≤ 1; ki j ∈ {0, 1},
(33)

where K is an adjacency matrix, with ki j = 1 denoting that
Y(i) is the predecessor of Y( j), and P is a similarity matrix
given by

pi j =
⎧
⎨
⎩

−∞ if Y(i) and Y( j) conflict
rank(H(Y(i)))+rank(H(Y( j)))

min
Ȳ j
i
rank(H(Y(i j)))

− 1 otherwise,

(34)

with Y(i j) = [Y(i) ȳ j
i Y( j)] being the joint tracklet of detec-

tions, padded with zeros at the entries of the tracklet Ȳ j
i of

missing data. Hence, the critical point of the aforementioned
algorithm is the solution of the low-rank Hankelmatrix com-
pletion problemminȳ j

i
rank(H(Y(i j))) in (34). This is solved

according to the framework described in Sect. 5.2, in which
the underlying LTI system is assumed to be autonomous and
the data Hankel matrices are composed of the respective out-
puts (2D tracking point coordinates).

Two experimental scenarios are considered, similarly
to (Dicle et al. 2013). In the first experiment, false positives
are increased by injecting uniformly distributed false detec-
tions with percentage varying as [0%, 10%, . . . , 50%]. In
the second scenario, false negatives are increased by remov-
ing, again uniformly, true detections with percentage varying
as [0%, 6%, . . . , 30%]. For each scenario, the experiment

7 (1) slalom (three skiers), (2) juggling (3-ball juggling scene), (3) acro-
bats, (4) seagulls, (5) TUD-Campus (pedestrians), (6) TUD-Crossing
(pedestrians), (7) crowd (from the crowdUCFdataset), (8) balls (bounc-
ing identical ping pong balls).

is repeated 10 times for each noise level, and the average
performance over the 60 runs is reported. The same five
methods used for comparison in the previous experiments
are examined. For details on methods to which we compare,
see Table 1. For the proposed method, Algorithm 1 is used,
with the weight matrixW in (12) formed by setting its entries
corresponding to the ‘missing’ tracklet Ẏ j

i to zeros and all
remaining entries to ones. Various values are examined for
the parameters, that is, (p, q) ∈ {(1, 2), (0.5, 2), (0.1, 2)}
and λ ∈ {10−6, 5 · 10−6, 10−5, . . . , 103}, for each video
and noise level. The convergence parameters ε1 and ε2 in
Algorithm 1 are set to 10−7. For all methods examined, a
Frobenius-norm based fitting measure is adopted (q = 2 for
the proposed method). This experimental choice was moti-
vated by preliminary experiments, in which it was observed
that the use of sparsity promoting norms for approximation
error resulted in trivial solutions when a large amount of
missing data was involved.

For evaluation, theMOTAmeasure (Bernardin andStiefel-
hagen 2008) is used, which is given by

MOTA = 1 −
∑

t ( f nt + f pt + mmt )∑
t gt

, (35)

where f nt , f pt , mmt and gt denote the false positives, false
negatives, mismatches and ground truth detections for frame
t , respectively.

Results and Discussion Tracklet matching results in terms
of the MOTA measure—averaged over all 8 videos, noise
levels and experiment runs—are reported for each scenario
in Table 5. For details on methods to which we compare,
see Table 1. Run time performance (time: secs per frame)

Table 5 Tracklet matching results, in terms of MOTA (Eq. (35)), on
the SMOT dataset for each experimental scenario

Method False positives False negatives

Time MOTA Time MOTA

HRM 0.202 0.9749 0.419 0.8687

SVD-free 0.033 0.9602 0.023 0.8422

SRPCA 0.104 0.9734 0.200 0.8812

IHTLS 0.174 0.9799 0.334 0.8712

SLRA 0.051 0.9646 0.230 0.7731

ours (p = 1, q = 2) 0.113 0.9733 0.249 0.8591

ours (p = 0.5, q = 2) 0.169 0.9745 0.277 0.8826

ours (p = 0.1, q = 2) 0.211 0.9779 0.311 0.8880

The bold values indicate the best performances in terms of each evalu-
ation metric
For each noise type, the results are averaged over 6 noise levels, with
each of the latter examined 10 times. Average execution time (time: secs
per frame) accounted for by each structured rank minimization method
is also shown. For details on methods to which we compare, see Table 1
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Fig. 7 Tracklet matching results, as obtained by the proposed method (p = 0.1, q = 2) and the various compared methods, in terms ofMissMatch

RatioMMR =
∑

t (mmt )∑
t gt

plotted as a function of noise level for the a false positives and b false negatives scenario, respectively

Fig. 8 (Better viewed in color). Trackletmatching results, as produced
by the proposed method (Algorithm 1 with p = 0.1, q = 2), illustrated
on three frames of the crowd sequence from the SMOT dataset. The
estimated trajectory index corresponding to each detection is shown

inside a bounding box. Solid line boxes indicate given detections, while
dashed line boxes indicate detections estimated by our method (Color
figure online)

of each respective algorithm, averaged similarly, is also
reported. Overall, performance varies less amongst differ-
ent methods for the false positives case, as compared to the
false negatives case. This can be partially ascribed to the
former case corresponding to a less demanding task of track-
let matching, since it involves a smaller amount of missing
data. The proposed method performs similarly to IHTLS in
terms of MOTA for both experimental scenarios, with the
difference in performance for all 8 videos calculated as not
statistically significant according to a paired t-test at signifi-
cance level α = 0.05. All remaining methods achieve lower
scores. The computational efficiency of the proposedmethod
(p = 0.1, q = 2) is comparable to that accounted for by the
best-performing amongst the compared methods, for both
scenarios. Similarly to the previous experiments, the con-
vex instance of our method (p = 1, q = 2) corresponds to a
smaller execution time than that of the non-convex instances,
albeit to a poorer performance.

Results in terms of MissMatch Ratio MMR =
∑

t (mmt )∑
t gt

plotted as a function of noise level, as obtained by the pro-
posed method (p = 0.1, q = 2) and the various compared

methods, are shown separately for the false positives and false
negatives scenario in Fig. 7. By comparatively inspecting the
two graphs, it is evident that more mismatches consistently
occur in the false negatives scenario for all methods, which is
exactly as expected. Also, MMR values vary slightly across
noise levels in the false positives scenario for most methods,
while in the most demanding false negatives scenario mis-
matches increase at a higher rate with the noise level. The
best-performing methods for both cases are IHTLS and the
proposed method, with the difference in MMR values being
statistically insignificant according to a paired t-test at sig-
nificance level α = 0.05 for all noise levels in both cases.
On the other hand, the poorest performance for both cases is
accounted for by the SVD-free and SLRA methods.

Tracklet matching results accounted for by the proposed
method (p = 0.1, q = 2), shown as bounding boxes con-
taining the estimated trajectory indices for the corresponding
detections, are depicted on three characteristic frames of
the crowd sequence from the SMOT dataset. The bounding
boxes drawn with dashed lines correspond to detections esti-
matedby the proposedmethod.One canobserve that tracklets

123



Int J Comput Vis

have been merged accurately in this challenging scenario
that involves a heavily occluded surveillance scene. It is also
worth noting that trajectory 22 (shown in red box) has been
accurately ‘completed’ for frames 127 and 140 (Fig. 8b and
8c, resp.), despite the intense occlusion occurring at frame
127.

7 Conclusions

A framework for dynamic behavior analysis in real-world
conditions was developed in this paper. Specifically, the
presented framework essentially employs a novel struc-
tured rank minimization method to learn a low-complexity
system from time-varying data, in the presence of gross
sparse noise and possibly missing data. By resorting to the
ADMM, an efficient algorithm for the proposed structured
rank minimization model along with a scalable version have
been developed. Regarding applications, focus was placed
on vision-based conflict intensity prediction, valence and
arousal prediction, and tracklet matching. Extensive exper-
iments on real-world data drawn from these application
domains demonstrate the robustness and the effectiveness
of the proposed framework.
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