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Abstract— A combination of passive, non-invasive and non-
intrusive smart monitoring technologies is currently trans-
forming healthcare. These technologies will soon be able to
provide immediate health related feedback for a range of
illnesses and conditions. Such tools would be game changing
for serious public health concerns, such as seasonal cold and
flu, for which early diagnosis and social isolation play a
key role in reducing the spread. In this regard, this paper
explores, for the first times, the automated classification of
individuals with Upper Respiratory Tract Infections (URTI)
using recorded speech samples. Key results presented indicate
that our classifiers can achieve similar results to those seen in
related health-based detection tasks indicating the promise of
using computational paralinguistic analysis for the detection of
URTI related illnesses.

Index Terms— Upper Respiratory Tract Infection, Classifi-
cation, Paralinguistic Analysis, Bag-of-Audio-Words, Feature
Selection

I. INTRODUCTION

Upper Respiratory Tract Infections (URTIs) are a serious
public health concern. URTIs are caused by a range of
illnesses such as the Common Cold and Influenza (flu), both
of which spread easily through a population. The World
Health Organisation estimates that cold and flu epidemics
result in approximately 3 to 5 million cases of severe illness,
and about 250 000 to 500 000 thousand deaths per year [1].
Technology can play a key role in helping prevent the spread
of illnesses related to URTIs through early detection. For
example, using social media platforms such as Twitter, it is
possible to track the spread of seasonal influenza epidemics
in a population and provide timely warnings to public health
authorities and at risk individuals [2].

One technology yet to be realised as an early diagnosis
system for potential URTIs is automated speech analysis.
Speech, as a complex and highly sensitive output system,
is potentially well suited for the remote diagnosis of URTI
related conditions. Slight changes in a speaker’s physical and
mental state are known to affect the muscular systems used
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to control vocal apparatus altering the acoustic properties of
the resulting speech. Speech analysis paradigms, nominally
based on high dimensional paralinguistic feature representa-
tions in combination with machine learning, has matured into
a new form of active and passive remote sensing technology
suitable for a broad range of health conditions [3].

This paper explores, if state-of-the-art paralinguistic anal-
ysis paradigms can be used to classify speech affected by an
URTI. To the best of the authors’ knowledge, this is the first
time such a study has been undertaken. We test the suitability
of two such paradigms; a brute-force based system which
utilises the widely used COMPARE feature set, introduced at
Interspeech 2013 Computational Paralinguistics Challenge
[4], in combination with Support Vector Machines (SVMs),
and, a state-of-the-art Bag-of-Audio-Words (BoAW) based
system [5]. Further, we also explore the advantages of
performing feature selection in both paradigms.

The rest of this paper is laid out as follows: Section II gives
a brief overview of related works, and Section III introduces
the Upper Respiratory Tract Infection Corpus. Our proposed
methods are outlined in Section IV, and the experimental
results and subsequent discussion are presented in Section V
and Section VI respectively. Finally, a brief conclusion and
outline of our future work plans are given in Section VII.

II. RELATION TO PRIOR WORK

The combination of the COMPARE feature set and a SVM
can be considered as a default-standard system in compu-
tational paralinguistics; as evidenced by its use in the pop-
ular Interspeech Computational Paralinguistics Challenges.
Whilst this set-up has not been tested for its efficacy in
recognising speech affected by a URTI, it has been used in
other similar speech-based health recognition tasks including
Autism detection [4], cognitive and physical load classifica-
tion [6], and Parkinson’s Condition detection [7].

BoAW is starting to gain popularity in many computational
paralinguistics tasks. For example, BoAW has been used in
related tasks including snore sound classification to aid the
detection of Obstructive Sleep Apnoea [8]. It has also been
shown to be useful in speech-based autism detection [9], or
depression detection [10]. Finally, it has produced state-of-
the-art results when performing emotion detection [11].

III. URTI DATASET

The Upper Respiratory Tract Infection Corpus (URTIC) was
created at the Institute of Safety Technology, University of
Wuppertal, Germany. The corpus consists of speech from
630 participants (382 m, 248 f), with a total of 11 283 audio



TABLE I
UPPER RESPIRATORY TRACT INFECTION CORPUS (URTIC): NUMBER

OF SUBJECTS PER CLASS IN THE TRAIN/DEVELOPMENT(DEVEL) SPLIT;
C: COLD; NC: NON-COLD; F: FEMALE; M: MALE. AT THE TIME OF

WRITING THE MAKE UP OF THE TEST PARTITION WAS NOT PUBLICLY

AVAILABLE.

# Train Devel ∑

F M F M

C 17 20 16 21 74
NC 65 108 66 107 346

∑ 82 128 82 128 420

∑ 210 210 420

TABLE II
UPPER RESPIRATORY TRACT INFECTION CORPUS (URTIC): NUMBER

OF INSTANCES PER CLASS IN THE TRAIN/DEVELOPMENT(DEVEL)
SPLITS; C: COLD; NC: NON-COLD; F: FEMALE; M: MALE. AT THE TIME

OF WRITING THE TEST LABELS WERE NOT PUBLICLY AVAILABLE.

# Train Devel ∑

F M F M

C 389 581 460 551 1 981
NC 2 821 5 714 2 978 5 607 17 120

∑ 3 210 6 295 3 438 6 158 19 101

∑ 9 505 9 596 19 101

recordings. The mean age of the participants was 29.5 years,
with a standard deviation of 12.1 years and a range of 12 to
84 years.

All recordings were made in quiet rooms with a micro-
phone/headset/hardware setup, the tasks were presented on
a computer in front of the participants. Audio files were
recorded with a 44.1 kHz sample rate and, down-sampled
to 16 kHz with a quantization of 16 bit. The speech material
consisted of different reading passages and speaking tasks.
The participants were asked to read aloud sentences regard-
ing voice commands as used for driver assistance systems
and short stories like “The North Wind and the Sun” (widely
used within phonetics), and “Die Buttergeschichte” (standard
reading passage in German, used in speech/language pathol-
ogy). Furthermore, spontaneous narrative speech was elicited
by asking subjects to briefly comment on, e. g., their last
weekend, the best present they ever received or to describe a
picture. Each session lasted between 15 minutes to 2 hours.

Each participant had to report a binary one-item measure
of having a cold on the German version of the Wisconsin
Upper Respiratory Symptom Survey (WURSS-24) [12]. The
questionnaire is an evaluative illness-specific quality of life
instrument and assesses the symptoms of the common cold.
In order to investigate cold induced speech changes, the
primary outcome of interest was the global illness severity
item (on a scale of 0 = not sick to 7 = severely sick).

The corpus consists of approximately 45 minutes of speech
and the available recordings were split into 28 652 chunks.
According to the binary one-item measures, the chunks are
split into two classes; chunks with a corresponding WURSS-

TABLE III
THE 65 LOW-LEVEL DESCRIPTORS (LLD) PROVIDED IN THE COMPARE

ACOUSTIC FEATURE SET.

4 energy related LLD Group

Sum of Auditory Spectrum (Loudness)
Sum of RASTA-filtered Auditory Spectrum
RMS Energy, Zero-Crossing Rate

prosodic
prosodic
prosodic

55 spectral LLD Group

RASTA-filtered Auditory Spectral Bands 1–26 (0-8 kHz)
MFCC 1–14
Spectral Energy 250–650 Hz, 1 kHz–4 kHz
Spectral Roll-Off Point 0.25, 0.5, 0.75, 0.9
Spectral Flux, Centroid, Entropy, Slope
Psychoacoustic Sharpness, Harmonicity
Spectral Variance, Skewness, Kurtosis

spectral
cepstral
spectral
spectral
spectral
spectral
spectral

6 voicing related LLD Group

F0 (SHS & Viterbi Smoothing)
Probability of Voicing
log. HNR, Jitter (local & DDP), Shimmer (local)

prosodic
voice quality
voice quality

24 equal to zero were assigned to Non-Cold (NC), whilst
chunks with a corresponding WURSS-24 greater than zero
were assigned to Cold (C). The chunks are then sub-divided
(in a speaker independent manner) into Train, Development,
and Test partitions. The division of the participants and their
gender between the Train and Development partitions is
given in Table I, and the distributions of the chunks between
the Train and Development partitions is also provided in
Table II1.

IV. EXPERIMENTAL SETTINGS

A. ComParE Acoustic Feature Set

All results presented are based on the Interspeech 2013
Computational Paralinguistics Challenge feature set COM-
PARE. This feature set contains 6 373 static features (i. e.,
functionals) of low-level descriptor (LLD) contours. An
overview of the prosodic, spectral, cepstal, and voice quality
LLDs is given in Table III. The functionals applied to
the LLD contours include the mean, standard deviation,
percentiles and quartiles, linear regression functionals, and
local minima/maxima related functionals; for full details the
reader is referred to [13].

B. Bag-of-Audio-Words

Bag-of-Audio-Words (BoAW) is based on the widely used
bag-of-words approach from natural language processing,
where documents are classified based on a histogram repre-
sentation of linguistic features. BoAW involves quantisation
of acoustic LLDs (cf. Figure 2), where each frame-level LLD
vector is assigned to an audio word from a previously learnt
codebook. Counting the number of assignments for each
audio word, a fixed length histogram (bag) representation
of an audio clip is generated. For codebook generation,
a random sampling of a certain number of LLDs from

1At the time of writing the URTIC was an active Interspeech Compu-
tational Paralinguistics Challenge dataset, therefore the equivalent division
for the test partitions were not publicly available
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Fig. 1. A Comparison of UARs found on the URTIC Corpus development partition over a range of different SVM complexities. The feature representation
are: COMPARE, COMPARE with Information Gain Ratio Feature Selection (Gain Ratio), COMPARE with Information Gain Feature Selection (Info Gain),
a COMPARE–LLD Bag-of-Audio-Words (BoAW) with a codebook size of 1000 (Cs = 1000), and a reduced set of COMPARE–LLDs BoAWred (Cs = 500).
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Fig. 2. A generalised overview of the bag-of-audio-words formation.

the training data has proven to be suitable [11]. Due to
the quantisation step, BoAW representations are generally
considered more robust than LLDs. The BoAW features have
been computed using the toolkit OPENXBOW [5], which
provides crossmodal (acoustic, visual, and text) bag-of-words
generation.

All BoAW representations were generated from the 65
LLDs from the COMPARE feature set with the corresponding
deltas. For each of the LLDs and their deltas, a separate
codebook was learnt using random sampling of the LLDs
from the training data. An extensive iterative search of
codebook size (Cs), between 250 and 8000 audio words,
was also conducted (results not given). In order to get rid
of the variation of scales between LLDs, which might have
an influence on the quantisation step, LLDs were normalised
to zero mean and unit variance. The parameters mean and
standard deviation have been estimated from the training data
(online approach).

C. Classification Set-Up

All results are reported in terms of Unweighted Average
Recall (UAR); this is the standard measure of the Interspeech
Computational Paralinguistics Challenges and is suitable for
use when the distribution among classes is not balanced. In
the training data, the instances of the minority class (Cold)
were upsampled by a factor of 9 to overcome potential effects
of class imbalance.

All feature vectors or BoAW representations were fed into
an SVM classifier with a linear kernel (SMO implementa-
tion in WEKA [14], with standardisation). The complexity
parameter (C) was optimised on a scale from 2 · 10−6 to
2 ·10−4 based on the on the development data. Note, initial
experiments on a larger range of C values (results not given)
indicated optimal performances were in this smaller C range.
For the final evaluation on the test data, a model was trained
on the fused training and development data.

Given the high dimensionality of the COMPARE feature
set, we also tested the following two different feature re-
duction methods. Namely, Information Gain Ratio Feature
Selection (Gain Ratio) and Information Gain Feature Selec-
tion (Info Gain), both available in the WEKA toolkit [14]).

V. RESULTS

As can be seen in Figure 1, all paradigms tested achieved
very similar performances on the development set across
the different SVM complexity parameters. The COMPARE
features’ highest UAR, 64.0%, was found with C = 1.00E −
05. Small gains in performance were achieved when applying
feature selection. Both methods achieved almost identical
performance; Gain Ratio achieved a UAR of 64.8% (C =
1.00E −05) and Info Gain a UAR of 64.9% (C = 1.00E −
05). For the BoAW representation, our initial testing (results
not given) revealed that Cs = 1000 gave the strongest and
most consistent results across the different SVM complex-
ities. The highest BoAW UAR achieved was 64.2% (C =
1.00E−06); as can be seen in Figure 1, this is slightly higher
than the one achieved by COMPARE features but below the
maximum UARs of the two feature selection paradigms.

Given the small improvement gained by using feature
selection with COMPARE, we also tested feature selection



TABLE IV
A COMPARISON OF UARS FOUND ON THE URTIC CORPUS TEST

PARTITION FOR DIFFERENT COMPARE AND BOAW BASED FEATURE

REPRESENTATIONS.

Feature Representation

COMPARE COMPARE
(Gain Ratio)

COMPARE
(Info Gain)

BoAW
(Cs = 1000)

BoAW
(Reduced)

70.2% 69.4% 69.3% 67.3% 70.2%

with BoAW (BoAWred in Figure 1). Reducing irrelevant
information from the input space makes sense for BoAW,
as each LLD has the same weight in the quantisation step.
Inspecting both sets of COMPARE features selected, we
observed that the 6 voicing related LLDs (cf. Table III)
were never chosen. Therefore, we split the input space
into the 4 groups (with their corresponding deltas); energy-
related, RASTA, MFCC, and further spectral LLDs. Learning
a different codebook for each group (Cs = 100 for energy-
related, Cs = 500 for the other groups) increased the best
performing BoAW UAR to 64.8% (C = 5.00E −06).

The test set results for the five different paradigms are
given in Table IV, the corresponding C values were those
identified on the development set. Interestingly, the COM-
PARE features performed the strongest, although these re-
sults are almost identical to those found with the two feature
selection methods. BoAW performed the weakest; however,
the the combination of BoAW and the reduced LLD set
matched performance with COMPARE. A finer search of the
complexity space for the Gain Ratio and Info Gain revealed
slight improvements in performance could be found, both
achieving maximum UARs of 70.4% (C = 4E −05).

VI. DISCUSSION

As, to the best of the authors’ knowledge, this is the first time
that speech based classification of speech affected by a URTI
has been performed, we cannot compare the performance
of our system with other results in the literature. However,
the combination of COMPARE and a SVM has been used
in other 2-class speech-based health classification tasks. For
example, when used to detect Autism, this paradigm yielded
a UAR of 67.1% [4], whilst UARs of 61.6% and 71.9%
were achieved for cognitive and physical load respectively
[6]. Similarly, BoAW have achieved a UAR of 79.5% for
snore sound classification [8]. The closeness in performance
to these other (more established) speech based detection tasks
indicates the potential for using speech as marker of URTIs.

VII. CONCLUSION

Smart monitoring technologies can play a key role in helping
to prevent the spread of commonly occurring diseases, such
as the Common Cold and Influenza, by providing simple
to use early detection systems, such as a mobile app. The
highest observed UAR of 70.2% on the test set of the newly
gathered Upper Respiratory Tract Infection Corpus indicates
the potential of using speech as such a marker.

Future work will include the use of different feature
representations as well as more sophisticated classification

techniques and features [15]. Given the slight improvement
seen when performing feature selection, we will repeat the
analysis with specific LLD feature groupings to gain insights
into which specific acoustic or prosodic features capture the
more salient properties of speech affected by a URTI.
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