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Abstract
Habitual snoring and Obstructive Sleep Apnea are serious
conditions that can affect the health of the snorer. For a
targeted surgical treatment, it is crucial to identify the ex-
act location of the vibration within the upper airways. As
opposed to earlier work, we present the first unsupervised
feature learning approach to this task based on bags-of-
audio-words. Likewise, we cluster feature values within a
given time-segment into acoustic ‘words’. The frequency
of occurrence per such word is then represented in a his-
togram per sound chunk to classify between four excitation
locations. In extensive test runs based on snore sound data
of 24 patients labelled by experts, we evaluated several fea-
ture sets as basis for audio word creation. In the result, we
find audio words based on wavelet features, formants, and
MFCC to be highly suited and outperform previous exper-
iments based on the same data set.
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1 Introduction
Habitual snoring (chronic snoring almost every night) is a
condition that affects approximately one third of the over-
all population [1]. Snoring severely affects the sleep qual-
ity of the bed partner [2]. Furthermore, it can be associated
with Obstructive Sleep Apnea (OSA), a chronic disease
that can severely affect health. OSA is defined as a syn-
drome with cessation or reduction of airflow during sleep
due to complete (apnea) or partial (hypopnea) collapse of
the upper airway for more than ten seconds and with five
or more episodes per hour in sleep [3]. When untreated,
OSA is an independent risk factor for cardiovascular dis-
eases, stroke, hypertension, and myocardial infarction [4].
In more than 80 % of the cases, OSA is associated with
snoring [5].

Snoring is caused by the vibration of soft tissue in the
upper airways. The exact vibration location varies by pa-
tient depending on the individual anatomy. Typical areas of
snoring noise generation include the soft palate, the uvula,
the palatine tonsils, the base of the tongue, and the epiglot-
tis. A variety of surgical options exist to treat snoring and
OSA. The identification of the individual mechanism of
snoring sound generation is vital for a targeted surgical ap-
proach. Drug induced sleep endoscopy (DISE) is increas-
ingly used to identify the location and form of vibrations
and obstructions [6]. However, DISE cannot be performed
in natural sleep. Acoustic analysis could be an alternative
to identify the vibration mechanisms within the upper air-
way.

The acoustic properties of snoring have been subject of
research since the 1980s. The application of multi-feature
acoustic analysis methods to determine the vibration or oc-
clusion mechanisms has been proposed in [7]. Our group
has applied machine learning models used for this purpose,
comparing different acoustic feature sets for their perfor-
mance in combination with frequently-used classifier mod-
els [8].

It is desirable to reduce the dimension of the feature
vector used for classifier training in order to save com-
putational effort, to achieve a robust representation of the
classifier model, and to reduce the risk of overfitting (es-
pecially in smaller training databases). Aiming to achieve
these goals and to further improve the classification per-
formance, we apply an unsupervised feature representation
known as the bag-of-audio-words (BoAW) approach.

The BoAW concept is inspired by an approach com-
monly used in text mining applications known as ‘bag-
of-words’. In audio signal processing, the bag-of-words
concept is modified by representing audio features in the
form of compact ‘audio words’, whereby each word corre-
sponds to a combination of acoustic features. The classifier
is then trained with a histogram representing the frequency
of occurrence of the respective words, further reducing the
complexity of the features used.

The efficiency of the BoAW method has been proven
successfully in many audio recognition tasks, such as acous-
tic event detection [9–11], multimedia event detection [12–
14], speech-based emotion recognition [15], and MIR [16].
Recently, the toolkit openXBOW has been introduced by
part of the present authors [17], providing a comfortable
way of combining arbitrary features of symbolic or nu-
meric representations into a single bag-of-words.

The remainder of this article is organised as follows:
Section 2 gives a detailed description of the data set used
for the experiments; next, in Section 3, the acoustic fea-
tures employed and the BoAW method are explained. Re-
sults are presented in Section 4 and discussed in Section 5.
A final conclusion and an outlook on future research are
given in Section 6.

2 Data
Our study is based on snore sounds from 24 subjects diag-
nosed with primary snoring or OSA who underwent drug
induced sleep endoscopy (DISE) in order to determine ad-
equate surgical intervention measures. The DISE investi-
gation was performed using a flexible nasopharyngoscope;
audio information was recorded in parallel using a headset
microphone. Video and audio were synchronously stored
in MP4-format.

From the video and audio recordings, the vibration sites



Figure 1: Corresponding positions of the VOTE classifi-
cation in the upper airway. ‘V’ = soft palate level (velum).
‘O’ = oropharyngeal level. ‘T’ = tongue base level. ‘E’ =
epiglottis level.

Class V O T E Total
Subjects 14 4 2 5 24 ∗
Snore Episodes 66 20 10 21 117

Table 1: Number of subjects and snore episodes per
class. ∗ One subject showed both E-type and V-type snor-
ing episodes during the DISE-examination.

of snoring events were categorised by an ENT (ear, nose,
and throat) expert. From each included subject, three to
five snoring events have been manually selected, extracted
from the audio data stream, and stored as separate audio
files (sampling frequency: 16 kHz, resolution: 16 bit). Our
sample set comprises 117 snoring episodes in total (length
ranging from 0.31 s to 2.17 s, average 1.24 s). For details,
see Table 1. Only snoring events that showed a clearly
identifiable, single source of snoring have been included.
Snoring events with unclear or mixed forms, e. g., several
vibration sites, were excluded.

It must be noted that the ‘site of vibration’ generating
the snore sounds and the ‘site of obstruction’ causing ap-
nea are two different definitions, which may or may not co-
incide in individual patients. In our work, we exclusively
focus on the determination of the site of vibration.

Classification of snoring sites is based on the ‘VOTE’
classification, introduced by Kezirian et al. for the stan-
dardisation of DISE evaluations [18]. Based on this clas-
sification, we distinguish between the velum, the oropha-
ryngeal area, the tongue base, and the epiglottis level to
distinguish different classes of snorers (see Figure 1).

In order to generate sufficient training and test instances
from our data, we segmented the snore episodes into sin-
gle instances of 200 ms length with an overlap of 50 % for
neighbouring instances. The 24 patients were randomised
into two groups for the purpose of cross-validation, i. e.,
each group contains the snore sound instances from 12 pa-
tients. The number of instances for each group is shown in
Table 2.

3 Methods
3.1 Feature extraction
Three different kinds of acoustic features, which have been
found suitable to classify snore sounds in previous exper-

Class V O T E Total
Group 1 376 132 18 125 651
Group 2 434 111 46 141 732
Total 810 234 64 266 1383

Table 2: Number of snore instances per group per class.

iments [8], were employed: Mel-frequency cepstral coef-
ficients (MFCCs), formants, and wavelet-based features.
All features have been computed as low-level descriptors
(LLDs) over time, with a frame size of 25 ms and a hop size
of 10 ms. For MFCCs and formants, a Hamming window
was used for windowing.

MFCCs 1 to 12 and log-energy were computed using
the feature extraction toolkit openSMILE [19]. A preem-
phasis with a coefficient of 0.97 was used in order to am-
plify the high frequencies.

Formants F1 to F3 were extracted in Matlab1 follow-
ing the method employed by Qian et al. [20]. Besides the
frequencies, their amplitudes in the short-time FFT spec-
trum were used as features.

Wavelet-based features were extracted in Matlab. In
[21], Khushaba et al. use ‘fuzzy wavelet packet transform’-
based features for monitoring of driver drowsiness from
physiological signals. In our work, however, we used Mul-
tiscale Wavelet Transform features introduced by the same
authors2, including energy, variance, waveform length, and
entropy of the decomposed signals. The wavelet decompo-
sition is based on Matlab’s Wavelet Toolbox. Only wavelets
from the Symlets family were taken into account as they
prove to work well for the task at hand [8]. This resulted
in a frame-level feature vector of size 28.

As a preprocessing step, the LLD contours over time
were normalised in order to ensure equal weight of all fea-
tures in the audio word assignment step. This is especially
important when features of different magnitudes are com-
bined into one audio word, such as MFCCs and formant
frequencies. In preliminary experiments, we found that
normalisation to a range of 0 to 1 provides better results
than standardisation to zero mean and unit variance. Nor-
malisation has been done in an on-line approach, i. e., the
minimum and the maximum of each LLD were derived
from the respective training fold only, and then used for
normalisation on both training and test fold.

3.2 Bags-of-audio-words
Instead of computing functionals [8], the BoAW method
was employed. In Figure 2, the general process of gen-
erating a BoAW representation from a sequence of LLDs
is shown. The LLDs are quantised according to a code-
book learnt from the respective training fold in an unsu-
pervised manner. Technically, any unsupervised learning
scheme, such as kmeans, kmeans++ [22], and expectation
maximisation clustering [10], or Deep Semi-NMF [23] can
be used. It has been shown, however, that a crude random
sampling of feature vectors to design a codebook competes
with the computationally more expensive kmeans cluster-
ing very well [14]. Random sampling can be interpreted
as the initialisation step of kmeans clustering. In our work,
we used a random sampling which is alike the initialisation
step of kmeans++, which we want to call ‘random++’.

1http://mathworks.com
2http://rami-khushaba.com/, Matlab function: getmswtfeat()
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Figure 2: The BoAW workflow.

In fact, the generation of a proper codebook is a crucial
point. As it might be the case that the codebook contains
very similar audio words, a step of codebook reduction can
help to make the codebook more robust and also smaller,
which results in a lower-dimensional feature vector. In
preliminary experiments, the linear correlation coefficient
(CC) seemed to work very well in finding redundant words.
Iteratively, for each audio word, the CC with all other au-
dio words is computed and each time, the CC is above a
defined threshold, the involved words are merged to create
a new word, while the original words are discarded from
the codebook.

In the vector quantisation step, every feature vector
is now assigned to the audio word with the smallest Eu-
clidean distance in the codebook. Finally, a histogram of
the frequencies of occurrence of each word in the code-
book is created for each audio segment. This kind of repre-
sentation is equivalent to the bag-of-words approach known
from natural language processing (NLP) [24].

Instead of taking only the closest audio word into ac-
count, each input feature may also be assigned to a cer-
tain number Na of closest words in the codebook, which
we call ‘multi-assignment’. It was shown that, in com-
bination with a soft encoding of the audio words, where
the term frequency in the bags is increased reciprocally
proportional to the rank in distance, this can outperform
the common hard encoding of only the closest audio word
[14]. Another method to perform soft encoding by means
of Gaussian encoding has been investigated by Pancoast
and Akbacak [25].

The BoAW can be postprocessed with techniques from
NLP, such as logarithmic term frequency weighting (log-
TF), inverse document frequency (IDF) weighting, and his-
togram normalisation [24, 26]. The latter is crucial when
the audio instances have different lengths, but it does not
decrease the performance in case of equal-length input. In
our experiments, each term frequency was divided by the
number of input frames and then multiplied by the code-
book size for numerical reasons.

The generation of BoAW was performed using our cross-
modal bag-of-words toolkit openXBOW [17].

Parameter Values
Na 1, 2, 5, 10, 20
Cs 100, 200, 500, 1000, 2000
Tc 0.8, 0.85, 0.9, 0.95, 1.0
C 10−11, 10−10, 10−9, . . . , 1

Table 3: Considered ranges of the parameters for the ex-
haustive search.

3.3 Classification
Classification was done using a support vector machine
(SVM) with linear kernel, where a fast implementation ex-
ists with LIBLINEAR [27]. Also the histogram intersec-
tion kernel has been tried, but the performance was worse.
Optimisation of the complexity C was done in the range
between 10−11 and 1 (see Table 3).

Evaluations were performed with and without standard-
isation of the term frequencies. As we always applied his-
togram normalisation, which somehow restricts the ranges
of the classifier input, the need of standardisation is not
as significant as for feature vectors composed of different
feature types.

4 Results
The parameters of the BoAW were optimised for each of
the three acoustic feature sets and their combinations sep-
arately. The unweighted average recall (UAR) was used
besides the weighted average recall (WAR) as a measure,
as the 4 classes are highly imbalanced. The mean of the
UARs and WARs achieved on both folds are reported in
the following.

The best results using functionals by Qian et al. [8]
were achieved using wavelet features. The reported results
serve as a baseline (see Table 5) to prove the performance
of our method:

Measure Maximum
UAR 71.2 %
WAR 78.2 %

Table 5: Baseline results for the snore sounds database [8].

We did an exhaustive search in the parameter space of
the number of assignments (Na), (initial) codebook size
(Cs), and threshold of correlation (Tc) to merge similar au-
dio words. The considered values for each parameter are
shown in Table 3. Besides, we evaluated the results with
and without the weighting techniques log-TF and IDF.

For combinations of different feature types, we consid-
ered two types of fusion in BoAW. Firstly, different code-
books and BoAW are created for each feature type (‘split
codebooks’). The bags are then fused before putting them
into the classifier. The given codebook sizes Cs apply to
each single codebook in this case. Secondly, a joint code-
book is created for the whole feature vector consisting of
several feature types.

It must be pointed out that the given codebook sizes
are only the initial codebook sizes. In case of Tc < 1.0, the
actual codebook will be smaller.

Our experiments have revealed that, performing stan-
dardisation of the term frequencies tends to provide bet-
ter results for UAR, while WAR is usually higher without



Features Split codebooks log-TF / IDF Na Cs Tc C UAR WAR
MFCC log-TF 10 500 0.8 10−3 72.5±6.6% 75.4±10.6%
Formants 2 500 0.95 10−5 76.4±2.2% 78.0±11.6%
Wavelets log-TF 5 500 - 10−5 73.7±0.2% 75.5±7.5%
MFCC + Formants yes log-TF 5 500 - 10−11 75.3±6.0% 75.6±12.1%
MFCC + Formants no log-TF 10 1000 0.9 10−3 78.3±9.2% 78.9±11.5%
MFCC + Wavelets yes log-TF 1 200 - 10−5 77.3±0.3% 77.5±8.0%
MFCC + Wavelets no log-TF 10 1000 - 10−5 78.8±4.4% 78.2±11.1%
Formants + Wavelets yes log-TF 5 500 - 10−5 78.1±4.3% 77.4±12.8%
Formants + Wavelets no log-TF 5 2000 - 10−11 78.3±1.0% 78.7±9.0%
MFCC + Formants + Wavelets yes log-TF 10 2000 - 10−6 77.9±5.4% 77.5±12.9%
MFCC + Formants + Wavelets no log-TF 5 1000 0.95 10−5 79.5±1.2% 79.7±9.3%

Table 4: The best results (in terms of UAR) with corresponding standard deviation (over both folds), WAR, and configu-
ration for the given feature sets.

standardisation. As our goal is to identify all classes of
snore sounds equally well, results with standardisation are
discussed in the following. In Table 4, the results with
maximum UAR of all configurations for each feature type
and each combination of feature types are displayed. The
corresponding configurations, complexities of SVM, and
the WAR are also shown.

5 Discussion
It is evident that using a combination of the three examined
feature types performs better than using only a single type.
The highest UAR of 79.5 % is achieved with a combination
of all three feature types with only one codebook. It is
interesting that a joint codebook seems to provide better
results in all cases, even though the different distributions
and properties of the LLDs cannot be taken into account so
well, then. The optimum codebook sizes obviously tend to
be larger in case of joint codebooks.

These findings were the same for the results without
standardisation. However, performance of only MFCCs
in terms of UAR was only 67.3 % and the optimum per-
formance for a joint codebook of all feature types (UAR:
78.1 %) was achieved with a reduced codebook of a size
of only 151 (fold 1) and 153 (fold 2) audio words, using
a threshold of 0.95. Smaller codebooks usually have the
advantage of a better generalisation, i. e., they are more ro-
bust in handling previously unseen data. The maximum
WAR reached without standardisation was 81.1 %, with a
joint BoAW of formants and wavelet-based features. Gaus-
sian encoding did not have a meaningful effect on the per-
formance, so all discussed results were achieved employ-
ing hard vector quantisation.

So far, our achievements outperform all results reported
with this database in terms of both UAR and WAR. The
improvement of the UAR is statistically significant with
respect to the baseline and a one-sided z-test (level of sig-
nificance: 0.001).

Table 6 shows the confusion matrix summed up over
both folds for the best configuration with respect to UAR.
Interestingly, the recall of type T (tongue) is 100 %, even
though this class is the least represented in the data set.
This shows that this type of snoring can be distinguished
very well from the other types and that the found model
does not overfit to the frequent classes too much. On the
other hand, the class T-events come from only two indi-
viduals, and the results might be put into perspective when

Predicted → V O T E Recall
Actual ↓ V 699 86 3 22 86.3 %

O 117 104 0 22 42.8 %
T 0 0 64 0 100 %
E 12 14 0 240 90.2 %

Table 6: Confusion matrix for the best results in terms of
UAR from Table 4. The sum over both folds is displayed.

using a larger database with more tongue-base snorers.
Type V (velum) and Type O (oropharynx) are the two

classes confused the most often. This can be explained
with a view on the anatomy: the velum and the oropharyn-
geal area are located closely to each other within the upper
airways and might therefore generate a similar frequency
response.

It is an ongoing debate whether findings under DISE
are comparable to natural sleep, as drug-induced sleep
might induce different muscle relaxation patterns and in
turn different vibration forms. However, it is supposed
that the actual acoustic characteristics of a vibrating palate,
tongue, or epiglottis are the same, no matter if they occur
in natural or artificial sleep.

Our results are based on manually selected snoring
events from a clearly identifiable, single source of vibra-
tion. In our future work, the classification task will be ex-
tended to unclear or mixed snoring forms. Further, an au-
tomated algorithmn needs to be employed to separate snor-
ing events from non-snore sounds and periods of silence, in
order to provide a feasible solution to complement current
sleep analysis techniques.

6 Conclusions and outlook
We found that BoAW representations of wavelet-based fea-
tures, formants, and MFCCs are suitable for the classifica-
tion of snore sounds following the 4-class VOTE scheme.
A UAR of 79.5 %, independent of the subject, could be
reached, which outperforms the accuracy of previous clas-
sification experiments based on the same data set.

Future work will comprise evaluation on a newly recor-
ded and independent database in order to show to which
extent the trained model generalises. In addition, further
types of acoustic features and automatic feature selection
methods will be examined in the context of BoAW.
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