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Abstract. This paper presents the University of Passau’s approaches for
the Multimodal Emotion Recognition Challenge 2016. For audio signals,
we exploit Bag-of-Audio-Words techniques combining Extreme Learn-
ing Machines and Hierarchical Extreme Learning Machines. For video
signals, we use not only the information from the cropped face of a
video frame, but also the broader contextual information from the entire
frame. This information is extracted via two Convolutional Neural Net-
works pre-trained for face detection and object classification. Moreover,
we extract facial action units, which reflect facial muscle movements and
are known to be important for emotion recognition. Long Short-Term
Memory Recurrent Neural Networks are deployed to exploit temporal
information in the video representation. Average late fusion of audio
and video systems is applied to make prediction for multimodal emotion
recognition. Experimental results on the challenge database demonstrate
the effectiveness of our proposed systems when compared to the baseline.

Keywords: Multimodal Emotion Recognition, Bag-of-Audio-Words, Trans-
fer Learning, Long Short-Term Memory, Convolutional Neural Networks

1 Introduction

Emotion recognition ‘in the wild’ is attracting growing interest due to its practi-
cal importance in many real-world applications, such as human-computer inter-
action (HCI), e-learning, and health care. Despite a large number of existing re-
search efforts to collect and analyse spontaneous or in the wild emotion databases
in English, French or German [5], there have only been a small number of simi-
lar investigations undertaken on Chinese databases [2]. To advance spontaneous
emotion recognition in the Chinese context, the Multimodal Emotion Recogni-
tion Challenge 2016 (MEC) provides a common benchmark database consisting
of audiovisual clips taken from Chinese movies and TV programs [16]. In this
paper, we present our approaches to the audio, video, and multimodal emotion
recognition tasks introduced in this challenge [16].
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Given the variety of acoustic events that can potentially occur within the
selected audiovisual clips present in the challenge data, Bag-of-Audio-Words
(BoAW) represents a potentially robust audio representation of the signal. This
technique has been successfully used in similar emotion recognition tasks [20,22,
23]. Inspired by this success, we create BoAW features based on five different
Low-Level-Descriptors (LLDs) sets available from our open source toolkit openS-
MILE [7] and investigate their suitability for in-the-wild emotion detection.

Neural Networks based classification is widely used in audio-based emotion
detection systems [3, 8, 17]. Extreme Learning Machines (ELMs) are a feedfor-
ward neural networks with a single hidden layer, currently gaining considerable
interest in the machine learning community. This is due in part to their fast
training and ease of implementation [11]. ELMs have shown competitive perfor-
mance compared to Support Vector Machines (SVMs) and Deep Neural Networks
(DNNs) in similar tasks [8,14] and are a key component in our audio-based sys-
tem.

Many of the latest video recognition approaches are based on the features ex-
tracted from deep Convolutional Neural Networks (CNNs). However, the major
challenge of applying this technique in the emotion recognition field is the lack
of adequate training data. We overcome this challenge by using CNN models
pre-trained on a large scale of data. The basic idea is to leverage the pre-trained
model as a feature extractor for the new dataset at hand. We first make use
of a pre-trained CNN model, referred to as VGGFace [19], to extract features
relevant to the facial expressions present in a video frame. In addition to the
features from the face in a video frame, we leverage another pre-trained CNN
model, referred to as VGG [28], to extract features relevant to the broader con-
textual information. Further, recent work [33] has verified the significance of
Facial Action Units (AUs) as features for emotion recognition. Thus, we also
incorporate AU features into our video-based system.

The remainder of this paper is organised as follows. First, the Sections 2 to 4
present each of the models used for different modalities. Next, Section 5 briefly
introduces the MEC 2016 data and presents the results on the data. Finally, in
Section 6 we conclude this paper and highlight future work directions.

2 Audio Systems

2.1 Feature Representations

BoAW audio feature representations are gaining popularity in many paralinguis-
tic classification tasks [20,22,23]. BoAW involves generating a fixed length audio
representation of each clip by first identifying a set of audio words, and then
quantising (bagging) the original feature space, with respect to the generated
codebook, to form a histogram representation of each data. The final BoAW
representation represents the frequency of each previously identified audio word
in a given instance [23].

Our basic framework to extract BoAW representations is depicted in Figure 1.
During training, acoustic LLDs are extracted from the audio files and are stan-
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Fig. 1: Overview of the Bag-of-Audio-Words (BoAW) generation framework used
in our audio systems. Figure adapted from [18].

dardised to zero mean and unit standard deviation. The next step is to generate
the codebook. Work presented in [22] indicates that the codebooks generated
via random sampling of the extracted LLDs offer similar emotion recognition
performance to codebooks generated using k-means clustering. Given this re-
sult, we also employ a random sampling of the extracted LLDs to generate our
codebooks.

After the codebook is built, a multi-assignment quantisation technique is
applied to map LLDs from each frame to the first d closest audio-words, as
measured by Euclidean distance. Preliminary experiments in [22] show that, for
speech emotion recognition, the multi-assignment (d > 1) outperforms the uni-
assignment (d = 1); therefore this paradigm is employed for all our extracted
BoAW representations. A histogram is generated by calculating the counts of
occurrence of each audio-word in all frames of one audio file. Finally, to generate
a BoAW representation of a file, its corresponding relative counts are normalised
to sum to one. This final step is undertaken to help minimise effects relating to
disparities caused by various lengths of the files present in the MEC dataset.
Note that, for the test data the LLDs of each frame are mapped to the audio
words from the codebook pre-generated during the training phase.

2.2 Classifiers

Classification is performed in our audio systems either using a SVM or ELM
back-end. SVMs are used due to their proven ability to handle a small dataset,
relative lack of computational expense and established software implementations.
Further, SVMs can also be regarded as a de-facto classifier for audio-based emo-
tion detection systems [25].

As previously mentioned, ELMs have demonstrated competitive performance
in similar audio based classification tasks [14]. The ELM is a single-hidden-layer
feedforward neural network which is exceptionally fast to train as the weights and
biases corresponding to the hidden layer are randomly assigned [11] and never
tuned. The basic theory behind ELMs, as introduced in [12], is that the first layer
(the inputs weights and biases) can be regarded as carrying an unsupervised
feature mapping and the only learning being performed is between the output
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Fig. 2: The Hierarchical Extreme Learning Machine (HELM) framework consists
of two phases: firstly two ELM based auto-encoders are used to form a sparse
representation of the input feature space follwed by a Extreme Learning Machine
(ELM) classifier. Figure adapted from [30].

of the second layer (the output weights) and the label matrix. This is achieved
efficiently using a least-squares solution. The generalised output function f(x)
of an ELM is given by:

f (x) =

L∑
i=1

βihi (x) = Hβ, (1)

where x is the input feature space, H a non-linear feature mapping (hidden layer)
and β = [β1, . . . , βL] the (learnt) output weight vector. hi (x), the output of the
ith hidden node can be obtained using a range of different activation functions,
i. e., Sigmoid, Hyperbolic tangent, Gaussian, etc. As mentioned, β is found by
minimising the least squared error:

min
β
‖Hβ −T‖2 , (2)

where T is the training target matrix. For further details on the ELM, the reader
is referred to [10,11].

A wide variety of variants to the basic ELM structure have been proposed
which include: Regularised ELMs (RELM), Kernel ELMs (KELM), and Hier-
archical -ELM (HELM) which can be regarded as the ELM analogue to deep
learning [11, 30]. Given the effectiveness of both DNNs and ELMs for perform-
ing speech-based emotion classification [8], an aim of this paper is to explore the
suitability of the HELM framework for in-the-wild audio based emotion classifi-
cation.
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Fig. 3: Video Emotion Recognition System Architecture.

The HELM framework is an extension of the original ELM that allows ELMs
to operate in a similar manner to a multilayer perceptron [30]. As seen in Fig-
ure 2, the HELM framework consists of three layers; two ELM based auto-
encoders and an ELM classifier. The role of the two ELM-based autoencoder
layers is to form a sparse hierarchical representation of the original input feature
space; the aim of this step is to exploit hidden information present in the training
data. Sparsity is achieved by enforcing an `1 penalty during ELM training:

min
β

{
‖Hβ −X‖2 + ‖β‖`1

}
. (3)

Each hidden layer in the HELM is an independent module and H is a randomly
initialized output which does not require fine tuning.

In the original HELM framework, standard ELM classifiers was proposed to
perform the classification step; however, as per the hidden layers, this module
is independent and can be replaced with any ELM variant. Initial experiments
(results not given) indicated that the use of a Polynomial Kernel ELM improved
overall system performance. The closed-form solution for β is given by:

β =

(
HTH +

I

C

)−1

HTT, (4)

where I is the identity matrix, C is the regularization coefficient, and H is the
given polynomial transformation of the input feature space. For further detail
on the KELM and HELM, the reader is referred to [10] and [30] respectively.

3 Video Systems

Given a video sequence, Figure 3 illustrates the architecture of our proposed
video emotion recognition system. Like many other recent approaches for video
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analysis, CNNs can be directly applied to learn salient features from the input
image. Our video system makes use of two CNN models (i. e VGG [28] and VG-
GFace [19]) pre-trained for object classification and face recognition on a large
scale of data. Here, the idea is to leverage the pre-trained models as feature ex-
tractors to provide features from each frame image and cropped face. In addition,
we exploit facial action units as complementary features to enhance the video
system. Length normalisation techniques such as max or temporal k-max pool-
ing on frames are employed in order to give a fixed length input to a following
classifier (i. e., SVMs or Long Short-Term Memory Recurrent Neural Networks
(LSTM RNNs)), making it easy to perform model learning. Finally, an average
decision rule is used to aggregate the scores predicated by the different models.

3.1 CNN Features

Deep CNNs are currently the most dominant approach in both video action
recognition [32] and video emotion recognition [33]; this is due to their over-
whelming accuracy. Deep CNNs trained on natural images exhibit an interesting
phenomenon: the features learned from bottom to top layers are from general
to specific. On the one hand, the first layer learns the features that are similar
to Gabor filters and colour blobs. On the other hand, the higher-level layers are
usually well trained for specific datasets and tasks. Consequently, the outputs of
higher-level layers are widely chosen for recognition tasks because they combine
all the general features into a rich image representation [4]. Thus, a deep CNN
pre-trained on a large scale of image data can be used as a feature extractor for
a task of interest.

A number of deep CNN architectures, which were originally proposed for
image classification tasks, are popularly applied to directly extract deep CNN
features from input pixels in a variety of computer vision tasks. These architec-
tures include VGG-16, VGG-19 [28], AlexNet [15], and GooLeNet-22 [29]. In this
challenge, we select the representative VGG-16 network (VGG), which consists
of 13 convolutional layers, and 3 fully connected layers. Specifically, we use the
‘FC7’ features (i. e., the last feature layer, 4096 dimensions); FC7 is the most
widely used deep feature extraction method for other computer vision tasks.

Facial-based features are known to be well suited for emotion recognition.
Therefore, in addition to the pre-trained VGG model, we use VGGFace [19] to
extract visual face descriptors of each frame. The VGGFace network has the
same network architecture as VGG, but was trained on a very large-scale face
data (2.6M images, 2.6k people). Hence, VGGFace tends to yield visual features
with a more specific focus on faces than VGG.

Further, for CNN features in the video system, we want not only use the
broad contextual information from the entire frame, but also the more specific
information from the face. To this end, as illustrated in Figure 3, the feature
extraction of our proposed system achieves both an image-based video repre-
sentation and a face-based video representation by using VGG and VGGFace,
respectively.
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Fig. 4: Illustration of max pooling and temporal k-max pooling, which are used
for length normalisation in order to provide fixed length feature vectors for a
later emotion classifier.

3.2 Action Units

Facial action units (AUs), which reflect facial muscle movements, are of impor-
tance in nonverbal behaviour and emotion recognition systems [21]. For exam-
ple, [33] recently presented the use of AUs, resulting in a superior multimodal
emotion recognition system in the wild; this result encouraged us to look into
AUs in this challenge. The aim of AUs is to provide features that are comple-
mentary to the CNN features. We estimate action units for each video frame by
using the OpenFace toolkit [1], resulting in 14 AU intensity factors and 6 AU
occurrence factors extracted for each frame.

3.3 Length Normalisation

Length normalisation methods encode video sequence data into a fixed-length
vector video representation by pooling all the descriptors from all the frames.
Max pooling over video frames, as shown in Figure 4, is typically used in video
emotion recognition and is considered as the default length normalisation method
tested in this paper. Such a pooling method results in one identical video repre-
sentation, which simplifies model learning.

Max pooling, however, ignores all temporal information within the video.
This information has been found important for distinguishing between different
emotions. Therefore, we also test temporal k-max pooling in order to preserve
valuable temporal information. The temporal k-max pooling, shown in Figure 4,
is applied to the frame-level features (e. g., CNN features) where the whole frame
sequence is divided into k sub-sequences in a temporal manner and a max pooling
step is used over frames in each sub-sequence. Note that, temporal k-max pooling
corresponds to max pooling when k is equal to 1.
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3.4 Temporal Modelling with LSTM RNNs

Since temporal k-max pooling captures valuable time varying information within
the video sequences, it enables us to perform temporal modelling. A large number
of previous works suggest that LSTM RNNs are good at exploiting temporal
information [31,34, 35]. Therefore, in addition to SVMs used in model learning,
LSTM RNNs are also used to leverage temporal information.

The LSTM RNN model uses one or multiple LSTM blocks [9, 35]. Every
memory block consists of self-connected linear memory cells c and three multi-
plicative gate units: an input gate i, a forget gate f , and an output gate o. Given
an input xt at the time step t, the activations of the input gate it, the forget
gate ft, the output gate ot, the candidate state value gt, the memory cell state
ct are separately computed by the following equations:

it = sigm(Wixxt + Wihht−1 + bi), (5)

ft = sigm(Wfxxt + Wfhht−1 + bf ), (6)

ot = sigm(Woxxt + Wohht−1 + bo), (7)

gt = tanh(Wgxxt + Wghht−1 + bg), (8)

ct = ft � ct−1 + it � gt, (9)

ht = ot � tanh(ct), (10)

where W is a weight matrix of the mutual connections; ht represents the output
of the hidden block; b indicates the block bias, � indicates the convolution
operation.

4 Multimodal Systems

Our multimodal systems are based on the aforementioned audio and video sys-
tems (see Sections 2 and 3). Late fusion or decision level fusion are adopted
simply because it has been constantly proven efficient in multimodal emotion
recognition tasks [33]. Specifically, we select a simple yet powerful, and widely
used average rule to fusion scores from different models.

5 Results

5.1 The MEC 2016 Data and Evaluation Metrics

The MEC 2016 data are a subset of the Chinese Natural Emotional Audio-Visual
Database (CHEAVD) that consists of video clips from a variety of Chinese movies
and TV programs. This subset was chosen with the aim to provide natural emo-
tion data close to real-world environments [2, 16]. The challenge data contain
samples labelled in eight emotional states: angry, anxious, disgust, happy, neu-
tral, sad, surprise and worried. In total, there are 2 852 examples, which are
partitioned into a Training (Tr.) set (1 981), a Validation (Val.) set (243), and a
Test set (628). The full details of the challenge data can be found in [16]. As the
dataset is unbalanced, Macro Average Precision (MAP) is used as the primary
metric in this challenge.
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Table 1: Audio results (in %) on the MEC 2016 test data. The last 3 runs
combined the validation (Val.) set and the training (Tr.) set to form a larger
training set.

Methods MAP (Accuracy)

Audio baseline 24.02 (24.36)

Run 1: BoAW-SVM (Tr.) 19.04 (25.16)

Run 2: BoAW-HELM (Tr.) 30.61 (25.16)

Run 3: BoAW-SVM (Tr. + Val.) 23.95 (25.80)

Run 4: BoAW-SVM (Tr. + Val., excluded talk-show data) 23.54 (25.32)

Run 5: BoAW-SVM + Up-sampling (Tr. + Val.) 36.11 (32.17)

Table 2: Confusion matrix of the best audio system on the test set in the 8-way
(i. e., Angry (Ang), Anxious (Anx), Disgust (Di), Happy (Ha), Neutral (Ne), Sad
(Sa), Surprise (Su), Worried (Wo)) emotion recognition.

Predicted Labels
Ang Anx Di Ha Ne Sa Su Wo

T
ru
e
L
a
be
ls

Ang 33 1 5 11 8 15 0 2
Anx 0 26 1 4 3 3 3 2
Di 24 3 3 18 1 34 3 0
Ha 9 2 3 13 4 18 4 3
Ne 14 5 2 21 12 40 8 1
Sa 32 4 3 26 5 67 2 3
Su 13 0 4 10 14 15 16 1
Wo 3 1 1 8 2 4 0 32

5.2 Audio Results

A wide range of preliminary experiments were performed to establish a suit-
able BoAW and SVM combination; the aim of this testing was to establish the
suitability of BoAW for in-the-wild emotion classification. In preliminary exper-
iments, we tested five distinct LLD sets: the 18 LLDs of the GeMAPS feature
set [6], the 23 LLDs of eGeMAPS [6], the 16 LLDs and their corresponding delta
regression coefficients of the INTERSPEECH 2009 Emotion Challenge feature
set (IS09-Emotion) [26], the 38 LLDs and their deltas of the INTERSPEECH
2010 Paralinguistics Challenge set (IS10-Paraling) [24], and the 65 LLDs and
their deltas of the ComParE feature set [27]. To optimise the codebook dimen-
sion, we chose three different sizes, i. e., 500, 1 000, 2 000. To optimise the number
of assignments, LLDs of each frame were mapped to the d = [25, 50, 100] closest
words.

These experiments (results not given) revealed that the best combination was
found to be BoAW formed formed from the IS10-Paraling feature set (Codebook
size 500, d = 25), in combination with a polynomial SVM (Degree: 1, Cost: 1).
This set-up gave a validation MAP of 32.62 %. Despite this relatively strong
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performance on the validation set, this audio system did not perform well on the
test set, achieving a MAP of 19.04 %.

As with the BoAW-SVM system, a wide range set of preliminary experiments
was performed to establish a robust set-up for the BoAW-HELM system. Again,
the IS10-Paraling feature set was identified as the most suitable for forming the
BoAW representation (Codebook size 500, d = 100). Further initial testing also
revealed the benefits of applying Canonical Correlation Analysis (CCA) feature
selection [13], before HELM training. It was observed during these initial tests
that it was easy for the ELM systems to overfit to their training set. Therefore
to establish a robust set-up, system configurations were chosen which performed
well under both validation (train on training set, tested on validation set) and
pseudo-test conditions (trained on training and validation sets, tested the extra
set of labelled data released by the challenge organisers). This testing set-up
revealed a single layer polynomial kernel ELM (Degree: 5, C: 0.2) set-up was able
to achieve a MAP of 33.78 %, and our BoAW-HELM system (Degree: 9, C: 500)
was able to achieve a MAP of 37.88 % representing a 12 % relative improvement
over the single layer ELM system. However, as with the BoAW-SVM system, the
strong performance of the HELM system in validation did not generalise onto
the test set where it achieved a MAP of 30.61 %; which is a relative increase of
27 % over the challenge test set baseline.

To help minimise the effects related to potential overfitting in the BoAW-
SVM and the BoAW-HELM audio systems, we re-trialled the BoAW-SVM sys-
tem combining the training set and the validation set to form a larger training
set with 2 473 instances. We then performed a series of ten-fold cross valida-
tion preliminary experiments on the combined training set and found that the
BoAW representation (Codebook size 2000, d = 25), of IS09-Emotion in conjunc-
tion with polynomial SVM (Degree: 1, Cost: 0.04) produced the best ten-fold
cross validation performance; this set-up was used for the rest audio systems.
This system achieved a MAP of 45.99 % under the cross validation condition;
however, disappointingly it achieved a MAP of 23.95 % on the test set.

Because the MEC dataset includes both movie clips and talk-show data,
the training set potentially exhibits an unwanted source of noise. Therefore,
to investigate this potential effect, our fourth audio system excludes the talk-
show data from the whole training data and uses the cleaned training data for
modelling. This system achieved a MAP of 74.66 % under the cross validation
condition. However, this system obtained a MAP of only 23.54 % on the test set.

Inspired by the baseline systems using sampling techniques to balance the
training data with talk-show data, we up-sampled the full training set before the
model learning for the fifth audio system. The final submission system yields a
MAP of 54.66 % under the cross validation condition and a test set MAP of
36.11 %. This is a relative increase of 50 % over the challenge baseline. Table 1
summarises the performance of our five audio systems on the test set and the
confusion matrix of the fifth audio system is presented in Table 2.
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Table 3: Video results (in %) on the MEC 2016 test data.

Methods MAP (Accuracy)

Video baseline 34.28 (19.59)

Run 1: VGG (max), VGGFace (k=1,3), AU (Average late fusion) 42.04 (35.89)

Run 2: VGG (max), VGGFace (k=1,3,5,7), AU (Majority voting) 45.21 (35.03)

Run 3: VGGFace (k = 3) (LSTM) 53.43 (32.17)

Run 4: VGG (max), VGGFace (k=1,3,5), AU (Average late fusion) 43.34 (35.67)

Run 5: VGG (max), VGGFace (k=1,3,5,7), AU (Average late rule) 44.36 (34.13)

Table 4: Confusion matrix of the best video system on the test set.
Predicted Labels

Ang Anx Di Ha Ne Sa Su Wo

T
ru
e
L
a
be
ls

Ang 16 0 0 3 0 44 12 0
Anx 3 22 0 1 0 8 7 1
Di 9 0 1 3 0 38 35 0
Ha 3 0 0 26 0 18 9 0
Ne 13 0 0 5 1 56 28 0
Sa 14 0 2 7 0 93 25 1
Su 9 0 0 3 0 40 20 1
Wo 2 0 2 2 0 15 7 23

5.3 Video Results

As mentioned, our videos systems make full use of the VGG video representa-
tion, the VGGFace video representation, as well as the AU video representation
in conjunction with SVMs and LSTM. A large number of preliminary experi-
ments were performed to identify for the best set-up on the validation set. Conse-
quently, we found that the VGG-based SVM system, the VGGFace-based SVM
system, and the AU-based SVM system obtain a validation MAP of 17.17 %,
33.31 %, and 30.16 %, respectively, which are all higher than the video baseline.
It is worth noting that the VGG-based SVM system is surprisingly competitive
with the baseline video system; this indicates that CNN video representations de-
rived from whole frames are as informative as hand-crafted video representation
derived from faces. Average pooling was also tested as a length normalisation
method. However, it resulted in worse performance than max pooling, and hence,
was not used in our emotion recognition systems.

Encouraged by the preliminary experiments above, we next investigated the
combination of the VGGFace video representation, the temporal k-max pooling,
and LSTM on the given training and validation sets. We trained the LSTM
network by feeding the k-max pooling video representations from the VGGFace
descriptors to the network and using the last sequence to produce the class
prediction. We found that the VGGFace-based LSTM system obtains the best
validation macro precision of 47.17 % when k = 3 for k-max pooling.
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Table 5: Multimodal results (in %) on the MEC 2016 test data. Each multimodal
system was found by performing average late fusion of the equivalent audio and
video systems.

Methods MAP (Accuracy)

Multimodal baseline 30.63 (21.18)

Average late fusion of ‘Run 1 from Table 1’ and ‘Run 1 of Table 3’ 49.43 (34.87)

Average late fusion of ‘Run 2 from Table 1’ and ‘Run 2 of Table 3’ 44.78 (34.39)

Average late fusion of ‘Run 3 from Table 1’ and ‘Run 3 of Table 3’ 36.70(28.34)

Average late fusion of ‘Run 4 from Table 1’ and ‘Run 4 of Table 3’ 43.55 (35.35)

Average late fusion of ‘Run 5 from Table 1’ and ‘Run 5 of Table 3’ 43.82 (34.24)

Table 6: Confusion matrix of the best multimodal system on the test set.
Predicted Labels

Ang Anx Di Ha Ne Sa Su Wo

T
ru
e
L
a
be
ls

Ang 8 1 0 4 0 54 8 0
Anx 1 22 0 1 0 11 7 0
Di 5 0 1 5 0 54 20 1
Ha 1 0 0 31 0 21 3 0
Ne 3 0 0 8 0 70 21 1
Sa 9 0 0 12 0 106 10 5
Su 2 1 0 4 1 45 20 0
Wo 0 0 0 5 0 13 2 31

Furthermore, we realised that the strong performance of a video system in
validation may not generalise to the test set. Hence, we decided to use five-fold
cross validation on the training set plus the validation set to select a robust video
model. As with the audio, we also excluded the talk-show data in an attempt to
clean the training data for model learning. Using this set-up, we obtain a cross
validation macro precision of 37.47 %, 52.05 %, and 23.55 % for the VGG-based,
VGGFace-based, and AU-based systems, respectively.

Using the set-up established in our preliminary experiments, all our five sub-
mission systems achieve very notable performance on the test data. Table 3
shows their results on the MEC 2016 test data. Four of our submissions used
a Radial Basis Function SVM (Gamma: 2−12, Cost: 10) as this set-up obtained
consistently good cross-validation performance across different video features.
Our other system (Run 3, Table 3) used LSTM and temporal k-max pooling,
where the network has one hidden layer with 256 hidden units; k = 3 for k-max
pooling achieved our best video-system MAP of 53.43 %, which is a relative in-
crease of 56 % over the challenge baseline. Table 4 presents the confusion matrix
for this system.
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5.4 Multimodal Results

Table 5 shows the performance of each of our submitted runs for the multi-
modal task. Each result has been found by performing average late fusion of
the equivalent audio and video systems, e. g., Run 1 in Table 5 is the fusion of
Audio System Run 1 (from Table 1) and Video System Run 1 (from Table 3).
It can been seen from Table 5 that all of our systems outperformed the baseline
multimodal system. Table 6 depicts the confusion matrix of the best multimodal
system which yielded a MAP of 49.43 %; a relative increase of 61 % over the
challenge baseline.

6 Conclusions

This paper presented the University of Passau’s audio, video and multimodal sys-
tems for submission to the Multimodal Emotion Recognition Challenge 2016. For
our audio systems, we investigated the effectiveness of a BoAW representation
in a combination with ELMs, Hierarchical ELMs, and SVMs. Disappointingly,
the strong performance of the audio systems during system development did not
generalise to testing. For our video-based systems we leveraged LSTM RNNs
based on visual features extracted from deep CNNs and facial action units. All
of our videos systems outperformed the challenge baseline, indicating the benefits
of using video features extracted from CNNs pre-trained for object recognition
or face recognition, for emotion classification. Our multimodal results highlight
the benefit of using late fusion. As with our video system, all of our multimodal
approaches outperformed the challenge baseline.

Future audio work will explore the benefits of using different techniques to
form BoAW codebook and the advantages offered by different Neural Network
based classifiers. To further improve the performance of our video systems, we
will investigate the use of Bidirectional Long Short-Term Memory Recurrent
Neural Networks. We will also consider sampling methods for audiovisual emo-
tion recognition as a way to balance the training data.
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