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Abstract— The analysis of high-dimensional, possibly tempo-
rally misaligned, and time-varying visual data is a fundamental
task in disciplines, such as image, vision, and behavior com-
puting. In this paper, we focus on dynamic facial behavior
analysis and in particular on the analysis of facial expressions.
Distinct from the previous approaches, where sets of facial
landmarks are used for face representation, raw pixel intensi-
ties are exploited for: 1) unsupervised analysis of the temporal
phases of facial expressions and facial action units (AUs) and
2) temporal alignment of a certain facial behavior displayed by
two different persons. To this end, the slow features nonnegative
matrix factorization (SFNMF) is proposed in order to learn slow
varying parts-based representations of time varying sequences
capturing the underlying dynamics of temporal phenomena,
such as facial expressions. Moreover, the SFNMF is extended
in order to handle two temporally misaligned data sequences
depicting the same visual phenomena. To do so, the dynamic time
warping is incorporated into the SFNMF, allowing the temporal
alignment of the data sets onto the subspace spanned by the
estimated nonnegative shared latent features amongst the two
visual sequences. Extensive experimental results in two video
databases demonstrate the effectiveness of the proposed methods
in: 1) unsupervised detection of the temporal phases of posed
and spontaneous facial events and 2) temporal alignment of facial
expressions, outperforming by a large margin the state-of-the-art
methods that they are compared to.

Index Terms— Nonnegative matrix factorization, slow features
analysis, facial behaviour dynamics, facial expressions, temporal
alignment.

I. INTRODUCTION

THE analysis of high-dimensional, dynamic visual data
arises in several vision and behaviour computing

problems, where naturally occurring phenomena, such as the
facial behaviour, are inherently time-varying. However, the
high-dimensionality and the dynamic nature of such data
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make their modelling and analysis challenging. Indeed, the
estimation and computation of models describing data with
thousands of dimensions is often infeasible. To alleviate
this issue, dimensionality reduction or latent feature learning
methods are widely adopted [1], [2]. These methods represent
the high dimensional visual data in a more compact form
by means of extracted features. However, the majority of
these methods neglect the temporal information and thus
they cannot be applied in dynamic visual data analysis. The
problem becomes more challenging when dealing with two
(or multiple) high-dimensional data sequences which are also
temporally misaligned, i.e., temporal discrepancies manifest
amongst the observation sequences [3], [4].

Several dimensionality reduction methods have been pro-
posed [1], [2]. Among them, dimensionality reduction methods
which are inspired by the human visual system, has attracted
significant attention in visual data analysis [5], [6]. Two promi-
nent examples of such methods are the nonnegative matrix
factorization (NMF) [5], [7], [8] and the slow feature analy-
sis (SFA) [6]. The NMF represents nonnegative multivariate
data, such as images, as a nonegative linear combination of
nonnegative basis by seeking a factorization of the data matrix
into two low-rank, nonnegative matrices. The nonnegativity
constraint leads to interpretable parts-based representations of
visual objects which is consistent to the way that the human
visual cortex encodes visual information [6], [9]. The SFA
is a latent feature learning method that intuitively imitates the
functionality of the receptive fields of the visual cortex in time-
varying stimuli [10] and hence can be exploited in analysis of
dynamic visual phenomena. The temporal slowness learning
principle in the SFA is motivated by the empirical observation
that the semantics of sensory data, such as the objects and their
attributes, are often more persistent (i.e., change smoothly)
than the independent activation of any single sensory receptor.
For instance, in facial behaviour analysis the SFA can learn
mappings from an image sequence with rapidly varying texture
to the corresponding high-level semantic concepts, that vary
slowly [11], [12]. Nonetheless, the aforementioned methods
cannot be applied in analysis of multiple, temporal misaligned
(visual) data sequences.

A widely adopted method for temporal aliment of two
data sequences is the dynamic time warping (DTW) [13].
The DTW aligns two sequences by minimizing the pairwise
squared Euclidean distance via dynamic programming. Even
though the DTW has been widely applied in practice, it has
three main drawbacks, namely, it fails under arbitrary affine
transformations of one or both sequences, it cannot handle

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



5604 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2017

Fig. 1. Ground truth of the temporal dynamics of (a) a posed smile and
(b) a spontaneous smile (N = neutral, ON = onset, AP = apex, OF = offest).

time series with different dimensions, and its performance
degenerates when the data are of very high dimensions. More
precisely, algorithms that rely on dynamic programming (DP),
such as the the DTW, are performing suboptimal when the
data are high dimensional and the computational complexity of
the DP algorithms increases exponentially with dimensionality
of the data. Therefore, DP algorithms are impractical for
applications where high-dimensional data occur [14].

To alleviate the aforementioned drawbacks the DTW is
incorporated into latent feature learning methods such as
in [3], and [15]–[17]. In particular, two sequences are aligned
in a shared low-dimensional latent subspace found by the
canonical correlation analysis (CCA) [1], [18] or its variants
[3], [16], [17]. However, the aforementioned methods ignore
the temporal dynamics in time series.

In this paper, we focus on dynamic facial behaviour analysis
and in particular on the analysis of facial expressions. Facial
expressions encoded in terms of Facial Action Units (FAUs)
activation are manifested by the motion of individual facial
parts or facial muscles [19]. Therefore, facial expressions can
be modelled as temporally evolving deformations of local
facial parts (e.g., mouth in case of smile). The temporal
dynamics of posed expressions are described by the following
temporal segments: Neutral, Onset, Apex, and Offset. In partic-
ular, neutral corresponds to the phase where there is no facial
motion while appex describes the temporal phase where the
strongest possible facial deformation occurs. The phase where
the facial motion starts until it reaches the apex is referred to as
onset and the reverse path from the apex to the relaxed neutral
position is the offset. Please refer to Fig. 1 (a) for a visual
description of these phases. Spontaneous expressions have a
different dynamical content than the posed ones exhibiting
multiple apexes [20] as it is shown in Fig. 1 (b). Particu-
larly, the movements of facial muscles in spontaneous facial
expressions are smooth, synchronized, symmetrical, consistent
and re ex-like, while in the posed ones the facial muscles
movements are based on volitional real-time control and tend

to be less smooth with more unstable dynamics [21]. For
instance, it has been proved that the transitions between the
temporal phases are smoother (e.g change from neutral to
onset) in spontaneous compared to posed smiles. In addition,
spontaneous smiles are usually accompanied by other AU/AUs
and are characterised by multiple temporal phases (e.g multiple
rises of the corner lips), in contrast to posed smiles. Hence,
extraction and appropriate description of facial behavioural
dynamics is very important for distinguishing between spon-
taneous and posed expressions [22]. Furthermore, recently it
was shown that facial dynamics are very powerful cue towards
age estimation [23].

The main idea pursued here, is to propose appropriate image
decomposition methods in order to exploit raw pixel intensities
for 1) unsupervised analysis of the temporal phases of facial
expressions and facial AUs and 2) temporal alignment of a
certain facial behaviour displayed by two different persons.
To this end, two novel nonnegative matrix decompositions
are proposed. The nonegativity constraints in the proposed
methods are motivated by the facts that 1) pixels intensities are
always non-negative and 2) the temporal activation envelope
encoding the temporal phases (i.e., neutral-onset-apex-offset-
neutral [22]) of the facial parts (i.e., facial muscles encoded
by AUs) is always a nonnegative function of time describ-
ing the magnitude of deformations away from neutral face.
Furthermore, the nonnegative muscle force constraint is used
in control-based facial animation methodologies [24].

The contributions of the paper are organized as follows:
• The slow feature nonnegative matrix factoriza-

tion (SFNMF) is proposed in order to learn slow varying
parts-based representations of time-varying visual data
depicting facial behaviour. To this end, a suitable model
that combines the principles of temporal slowness
and nonnegative parts-based learning is proposed
in Section III. The SFNMF derives a nonnegative
basis matrix capturing the activated facial part and a
matrix with nonnegative coefficients representing the
nonnegative latent space which accounts for the temporal
activation envelope of the facial parts.

• The SFNMF is extended to handle temporally misaligned
data, Section IV. To achieve this, the DTW is incorpo-
rated into the SFNMF, allowing the temporal alignment of
the data sets onto the subspace spanned by the estimated
nonnegative shared latent features among two visual
sequences.

• Two algorithms, with guaranteed convergence to station-
ary point, for the SFNMF and its extension are developed
in Sections III and IV, respectively.

The main advantage of the proposed methods is that the
analysis of dynamic visual content and the temporal alignment
do not rely on face detection, point localization, and tracking
methods and therefore, they are not affected by the quality of
the extracted facial landmarks. The SFNMF and its extension
are evaluated in unsupervised analysis of temporal phases
and in temporal warping of both posed and spontaneous
facial events by conducting experiments in the MMI [25],
[26] and the UvA-Nemo Smile (UNS) [27] datasets. The
experimental results reported in Section V indicate that the
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proposed methods outperform the methods that they are
compared to.

A. Notations

Throughout the paper, matrices (vectors) are denoted
by uppercase (lowercase) boldface letters e.g., X, (x).
I (1) denotes the identity matrix (vector of ones) of compatible
dimensions. 0 is the zero matrix. The i th column of X is
denoted as xi . The set of real numbers is denoted by R,
while the set of nonnegative real numbers is denoted by R+.
A set of N real matrices of varying dimensions is denoted by

{X(n) ∈ R
Fn×Tn }N

n=1. ‖X‖F
.=

√∑
i
∑

j x2
i j =

√
tr(XT X) is

the Frobenius norm, where tr(·) denotes the trace of a square
matrix. The inequality X ≥ 0 denotes that the entries of X
are element-wise nonnegative. The element-wise (Hadamard)
product is denoted by ◦.

II. BACKGROUND

To make the paper self-contained, this section includes a
brief review of the the NMF [5], the SFA [6], the DTW [28]
and the CTW [15].

A. Nonegative Matrix Factorization

Let X = [x1, x2, · · · , xT ] ∈ R
F×T+ be a nonnegative data

matrix which containts in its collumns T , F-dimensional
data points. The NMF seeks a factorization of X into two
nonnegative, low-rank matrices V ∈ R

F×K+ with K � F and
W ∈ R

K×T+ by solving the following optimization problem:

argmin
V,W

1

2
‖X − VW‖2

F

s.t. V ≥ 0, W ≥ 0. (1)

V is the basis matrix, while W contains the appropriate
nonegative linear combination coefficients that reconstruct
each column of X. The optimization problem (1) is solved
iteratively by applying the following multiplicative update
rules at each iteration, indexed by t , until a convergence
criterion is met.

Wt+1 = Wt ◦ Vt
T X

Vt
T Vt Wt

, (2)

Vt+1 = Vt ◦ XWt+1
T

Vt Wt+1Wt+1
T
. (3)

B. Slow Feature Analysis

Let us assume that X ∈ R
F×T represents an F-dimensional

temporal sequence (e.g., T vectorized video frames). The SFA
seeks a low-rank projection matrix V ∈ R

F×K with K � F
that extracts slowly varying features from the rapid varying
input sequence X by solving the following optimization prob-
lem:

argmin
V

tr[VT AV], s.t. VT BV = I. (4)

In (4), A is the covariance matrix of the first-order temporal
derivative of X, denoted as Ẋ, and B is the data covariance
matrix. That is,

A = 1

T − 1
ẊẊT = 1

T − 1
XLXT , B = 1

T
XXT , (5)

where L = PPT and P is an T ×(T −1) matrix with elements
pi,i = −1 and pi+1,i = 1. The solution of (4) is found by
the Generalized Eigenvalue Problem AV = BV�, where the
columns of the projection matrix V are the generalized eigen-
vectors associated with the K lowest eigenvalues contained in
the diagonal matrix � [6].

C. Dynamic Time Warping

Given two temporally misaligned data sets {X(n) =
[x(n)1 , x(n)2 , · · · , x(n)Tn

] ∈ R
F×Tn }2

n=1, with T1 �= T2 the DTW
aligns them along the time axis by solving [28]:

argmin
{�(n)}2

n=1

1

2
‖X(1)�(1) − X(2)�(2)‖2

F , (6)

where �(1) = �(p(1)) ∈ {0, 1}T1×m and �(2) = �(p(2)) ∈
{0, 1}T2×m are binary selection matrices associated with the
warping paths (p(1) and p(2)) by a non-linear mapping, �(p) :
{1 : T }m → {0, 1}T ×m , which sets δpt ,t = 1 for t ∈ {1 : m}
and zero otherwise, where m ≥ max(T1, T2) is the number
of steps required to align both time series and is optimally
selected by the DTW algorithm. The warping paths p(1) ∈
{1 : T1}m and p(2) ∈ {1 : T2}m indicate the compound of
alignment in frames. For instance, the i th frame in X(1) and
the j th frame in X(2) are aligned if there exists p(1)t = i and
p(2)t = j for some t.

Additionally, in order the time series to be aligned
in time, the warping paths has to satisfy the boundary
condition ([p(1)1 , p(2)1 ] ≡ [1, 1]T and [p(1)m , p(2)m ] ≡ [T1, T2]),
the continuity condition [p(1)t , p(2)t ] − [p(1)t−1, p(2)t−1] ∈
{[0, 1], [1, 0], [1, 0]}.) and the monotonicity condition
(t1 ≥ t2 ⇒ p(1)t1 ≥ p(1)t2 and p(2)t1 ≥ p(2)t2 ).

Although the number of possible alignments is exponential
in T1 · T2, the DTW recovers the optimal alignment path in
O(T1 · T2) by employing dynamic programming. Clearly, the
DTW can handle only data of the same dimensions.

D. Canonical Time Warping

The CTW [15] incorporates CCA [1] into the DTW, allow-
ing the alignment of data sequences of different dimensions
by projecting them into a common latent subspace found by
the CCA. Furthermore, the CCA-based projections perform
feature selection by reducing the dimensionality of the data to
that of the common latent subspace, handling the irrelevant or
possibly noisy attributes.

More formally, let {X(n) ∈ R
Fn×Tn }2

n=1 be a set of
temporally misaligned data of different dimensionality
(i.e., F1 �= F2), the CCA is incorporated into the DTW by
solving [15]:

argmin
{V(n),�(n)}2

n=1

1

2
‖V(1)T X(1)�(1) − V(2)T X(2)�(2)‖2

F ,

s.t. V(n)T X(n)X(n)T V(n) = I,

V(1)T X(1)�(1)�(2)
T

X(2)T V(2) = D,

X(n)�(n)1 = 0, �(n) ∈ {0, 1}Jn×J , n = 1, 2. (7)
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Fig. 2. Graphical model of an Autoregressive process.

V(1) ∈ R
F1×K and V(2) ∈ R

F2×K project X(1) and X(2),
respectively onto a common latent subspace of
K ≤ min(F1, F2) dimensions, where the correlation
between the data sequences is maximized. D is a diagonal
matrix of compatible dimensions. The set of constraints in (7)
is imposed in order to make the CTW translation, rotation,
and scaling invariant. The solution of (7) is obtained by
solving CCA and DTW in an alternating fashion.

III. SLOW FEATURES NONNEGATIVE

MATRIX FACTORIZATION

In this section, the SFNMF is detailed. In particular,
the optimization problem of the SFNMF is derived from a
probabilistic point of view by introducing an autoregressive
statistical model for capturing temporal dependencies
(Section III-A). An iterative algorithm for the SFNMF is
proposed in Section III-C.

A. Autoregressive Model for Capturing Temporal
Dependencies

Let X ∈ R
F×T represents a time-variant, high-dimensional

time-series e.g., a video sequence of T frames depicting a
person performing a facial expression. We assume that the
columns of X are described by the following autoregres-
sive (AR) model:

xi = Vwi + ei , ei ∼ N (ei |0, σ 2I)

wi = φwi−1 + ni , ni ∼ N (ni |0, I)

wi ∼ N (wi |0, (1 − φ2)−1), (8)

where V ∈ R
F×K is a linear subspace of K basis

(K < min(F, T )), wi ∈ R
K are the latent features, and φ are

coefficient regulating the first order dependencies between
successive latent variables. The graphical model for such an
AR model is depicted in Fig. 2.

Let the latent features stored in columns of W ∈ R
K×T and

w̃ j ∈ R
T ×1 be the j -th row of W, the prior over the latent

variables is assumed to be:

p(w̃ j |L) = |L|√
(2π)K

e− 1
2 (w̃ j )

T Lw̃ j . (9)

Since the autoregressive model (8) is a special case of a
Gaussian Markov Random Field (GMRF) [29], L ∈ R

T ×T

is a tri-diagonal precision matrix defined as follows:

L =

⎛
⎜⎜⎜⎜⎜⎝

1 −φ
−φ 1 + φ2 −φ

. . .
. . .

. . .

−φ 1 + φ2 −φ
−φ 1

⎞
⎟⎟⎟⎟⎟⎠

(10)

Therefore, the prior for all the rows of matrix W is written as

p(W|L) =
K∏

j=1

p(w̃ j |L) = |L|T√
(2π)K T

e− 1
2

∑T
j=1(w̃ j )

T Lw̃ j

= |L|T√
(2π)K T

e− 1
2 tr[WLWT ]. (11)

Hence, according to Fig. 2, the factorization of the joint
likelihood of X,W given σ 2, L and V has the form

p(X,W|L,V, σ 2)

= p(X|W,V, σ 2)p(W|L)

=
T∏

i=1

p(x̃i |wi ,L, σ 2)p(W|L)

= |L|T√
(σ 2)FT (2π)T (K+F)

e
− 1

2 (
1
σ2 ‖X−VW‖2

F +tr[WLWT ]) (12)

It is easy to show that the Maximum Likelihood (ML)
solution of (12) in the deterministic case is given by solving:

argmin
V,W

‖X − VW‖2
F + λtr[WLWT ], (13)

where λ ≥ 0 is a regularization parameter balancing the two
terms in (13). In particular, ‖X−VW‖2

F measures how well the
data can be reconstructed by the product of the basis matrix V
and the latent space weights W, while the second term
tr[WLWT ] models the undirected temporal dependencies.

B. SFNMF Optimization Problem

Although, the the temporal dependencies in data are explic-
itly modelled in (13), its solution does not explain the data as
purely additive linear combination of nonnegative basis which
is desirable in case of visual data analysis. To alleviate this
issue, the SFNMF imposes nonnegativity constraints in (13)
by solving the non-linear optimization problem:

argmin
V,W

F(V,W) = ‖X − VW‖2
F + λtr[WLWT ]

s.t. V ≥ 0, W ≥ 0. (14)

In (14), V ∈ R
F×K+ are the nonnegative basis matrix

accounting for the active facial parts and W ∈ R
K×Tn+ are

the coefficient matrices capturing the dynamics of the facial
event (i.e., temporal envelope).

C. Multiplicative Update Rules for SFNMF Optimization

To solve the SFNMF constrained optimization problem
in (14) a block-coordinate descent procedure is employed,
where V and W are updated iteratively via the multiplica-
tive updates derived next. Let us introduce the Lagrangian
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multipliers 	 ∈ R
F×K and 
 ∈ RK×T associated with the

inequality constraints. Thus, the Lagrangian function L(V,W)
is expressed as:

L(V,W) = ‖X − VW‖2
F + λ tr[WLWT ]

+ tr[�VT ] + tr[�WT ]. (15)

To derive multiplicative updates, we set partial derivatives
of the Lagrangian function with respect to V(n) and W(n) equal
to zero. Let L(n) be decomposed into two nonnegative parts
i.e., L(n) = L(n)

+ − L(n)
−

as follows.

L(n)
+ = (|L(n)| + L(n))

2
(16)

L(n)
− = (|L(n)| − L(n))

2
(17)

The partial derivatives are given by,

∂L
∂vi,k

= −2[XWT ]i,k + 2[VWWT ]i,k + φi,k = 0 (18)

∂L
∂wk, j

= 2[VT VW]k, j − 2[VT X]k, j + 2λ[WL+]k, j

− 2λ[WL−]k, j + ψk, j = 0. (19)

Let t be the iteration index. By employing the
Karush-Kuhn-Tucker conditions φi,kvi,k = 0 and
ψk, jwk, j = 0 the following multiplicative updates are
derived:

Vt+1 = Vt ◦ XWt+1
T

Vt Wt+1Wt+1
T . (20)

Wt+1 = Wt ◦ Vt
T X + λWt L−

Vt
T Vt Wt + λWt L+ . (21)

The main limitation of the above multiplicative updates is
that they do no guarantee convergence to stationary point [30].
To alleviate this, modified multiplicative update rules are
developed next.

D. Modified Multiplicative Updates

The multiplicative updates (20) and (21) are equivalently
written in a gradient descent form:

Vt+1 = Vt − Vt ◦ ∇V F(Vt ,Wt+1)

2Vt Wt+1Wt+1
T
, (22)

Wt+1 = Wt − Wt ◦ ∇W F(Vt ,Wt )

2(Vt
T Vt Wt + λWt L+)

, (23)

with

Vt

2Vt Wt Wt
T
,

Wt

2(Vt
T Vt Wt + λWt L+)

being the step sizes when updating Vt and Wt , respectively.
Unfortunately, by applying the above update rules we

cannot guarantee that the SFNMF objective function is
strictly decreasing due to the following reasons: 1) the step
sizes may have zero denominator, and 2) if the nominator
of the step sizes is zero and the gradient ∇V F(Vt ,Wt ) < 0
(∇W F(Vt ,Wt ) < 0) then Vt (Wt ) does not change. Therefore
we cannot ensure convergence to stationary point [30].

In order to overcome the aforementioned limitations we
follow [30] and modify the step sizes as follows:

Vt

2Vt Wt Wt
T
,

Wt

2(Vt
T Vt Wt + λWt L+)+ δ

(24)

where

Vt ≡
{

Vt , i f ∇V F(Vt ,Wt ) ≥ 0

max(Vt , σ ), i f ∇V F(Vt ,Wt ) < 0
(25)

Wt ≡
{

Wt , i f ∇W F(Vt ,Wt ) ≥ 0

max(Wt , σ ), i f ∇W F(Vt ,Wt ) < 0.
(26)

δ and σ represent small positive numbers. The modified update
rules for the SFNMF is summarized in Algorithm 1 where its
convergence is given in the Appendix A.

Algorithm 1 SFNMF

E. Computational Complexity

The computational complexity of the SFNMF is as follows.
The cost of calculating the update rules (22) and (23) is
identical to that of NMF, namely O(t FT K ) with t being
the total number of iterations. Apart from the multiplicative
updates, SFNMF also needs to construct the precision matrix L
which takes O(T 2 F) making the overall cost for the SFNMF
to be O(t FT K + T 2 F)

Similarly to the SFNMF, the GNMF requires O(T 2 F)
operations to construct the p-nearest neighbor graph, and thus
its overall cost is identical with that of the SFNMF.

IV. SFNMF WITH TIME WARPING

Accurate temporal alignment of nonnegative data sequences
is an essential pre-processing step towards the analysis of
multiple, temporally misaligned data sequences depicting the
same visual phenomena. The problem is defined as finding
the temporal coordinate transformation that brings two given
data sequences into alignment in time. To handle temporally
misaligned, nonnegative data sequences, the DTW is
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incorporated into the SFNMF. The proposed method is
coined as SFNMF-TW. Formally, given two data sequences
depicting the same facial event, {X(n) ∈ R

Fn×Tn+ }2
n=1, of

different dimensionality and length, i.e., F1 �= F2, T1 �= T2,
the SFNMF-TW enables their temporal alignment onto the
subspace spanned by the estimated shared latent features.

To this end, the SFNMF-TW solves:

min
{V(n),W(n)�(n)}2

n=1

2∑

n=1

‖(X(n) − V(n)W(n))�(n)‖2
F

+
2∑

n=1

λtr[W(n)L(n)W(n)T ]

+ ‖W(1)�(1) − W(2)�(2)‖2
F

s.t. {V(n) ≥ 0,W(n) ≥ 0,�(n) ∈ {0, 1}Tn×T }2
n=1, (29)

where, V(n) ∈ R
Fn×K
+ are the nonnegative basis matrices

accounting for the active facial parts and W(n) ∈ R
K×Tn+ are

the coefficient matrices capturing the temporal dynamics of
the facial event. {L(n)}2

n=1 are tri-diagonal precision matrices
of the form defined in (10) and {�(n)}2

n=1 are binary selection
matrices encoding the alignment path as in the DTW.

Again, (29) is solved using a block-coordinate descent
procedure, where the matrices {V(n),W(n)}2

n=1 are updated
via multiplicative update rules and the warping paths via
the DTW at each iteration. Specifically, to solve (29) we
introduce the Lagrangian multipliers {�(n) ∈ R

Fn×K }2
n=1 and

{�(n) ∈ R
K×Tn }2

n=1, associated with the inequality constraints.
The Lagrangian function for (29) is formulated as:

L({V(n),W(n),�(n)}2
n=1) =

2∑

n=1

‖(X(n) − V(n)W(n))�(n)‖2
F

+
2∑

n=1

λtr[W(n)L(n)W(n)T ] + ‖W(1)�(1) − W(2)�(2)‖2
F

+
2∑

n=1

tr[	(n)V(n)T ] +
2∑

n=1

tr[
(n)W(n)T ]. (30)

To derive multiplicative updates, we set partial derivatives
of the Lagrangian function with respect to {V(n)}2

n=1 and
{W(n)}2

n=1 equal to zero. For n = 1, 2, the partial derivatives
are given by,

∂L
∂w

(n)
k, j

= [−2V(n)T X(n)D(n) + 2V(n)T V(n)W(n)D(n)
T

+ 2λW(n)L(n)
+ − 2λW(n)L(n)

− + 2W(n)D(n)

− 2C(n)]k, j + ψ
(n)
k, j = 0, (31)

∂L
∂v
(n)
i,k

= [−2X(n)D(n)W(n)T + 2V(n)W(n)D(n)W(n)T ]k, j

+φ(n)i,k = 0, (32)

where for notation convenience we set D(n) = �(n)�(n)
T

and
C(1) = W(2)�(1)�(2)

T
and C(2) = W(1)�(2)�(1)

T
. As in

the case of SFNMF by employing the Karush-Kuhn-Tucker
conditions ψ(n)k, jw

(n)
k, j = 0 and φ

(n)
i,k v

(n)
i,k = 0 the following

multiplicative updates are derived:

W(n)
t+1 = W(n)

t ◦ V(n)
t

T
X(n)D(n)t +λW(n)

t L(n)
−+C(n)t

V(n)
t

T
V(n)

t W(n)
t D(n)t + λW(n)

t L(n)++W(n)
t D(n)t

.

(33)

V(n)
t+1 = V(n)

t ◦ X(n)D(n)t W(n)
t+1

T

V(n)
t W(n)

t+1D(n)t W(n)
t+1

T
(34)

Similarly to the case of one sequence these updates are
augmented with small positive numbers δ(n) to ensure that
there will not be division with zero as follows

W(n)
t,r =W(n)

t

− W
(n)
t ◦ ∇W (n)F(V(n)

t ,W(n)
t )

2[V(n)
t

T
V(n)

t W
(n)
t D(n)t +λW

(n)
t L(n)++W

(n)
t D(n)t ]k, j + δ(n)

(35)

V(n)
t,r = V(n)

t − V
(n)
t ◦ ∇V (n) F(V(n)

t ,W(n)
t,r )

2[V(n)
t W(n)

t,r D(n)t W(n)
t,r

T ]i,k + δ(n)
, (36)

where W(n)
t,r and V(n)

t,r are the intermediate matrices before

the normalization and the matrices V
(n)
t and W

(n)
t are defined

as in (25) and (26), respectively. The warping matrices
�(1) and �(2) are iteratively updated via the DTW. The
iterative procedure terminates when the convergence criterion
is satisfied. We used the difference of the objective function
between two successive iterations as stopping criterion. The
proposed algorithm for the SFNMF-TW is summarized
in Algorithm 2 and its convergence can be also proved
following [30].

Algorithm 2 SFNMF-TW

Empirical convergence has been always observed in all
tested videos both in terms of the cost function (30), as
well as for the DTW step in (6). Fig. 3 shows the averaged
convergence curves of SFNMF-TW versus the number of
iterations in both MMI and UNS datasets. Furthermore, Fig. 4
shows the evolution of the DTW error term of the cost function
with respect to iterations.



ZAFEIRIOU et al.: NONNEGATIVE DECOMPOSITIONS FOR DYNAMIC VISUAL DATA ANALYSIS 5609

Fig. 3. Convergence curve on (a) MMI database (b) UNS database.

Fig. 4. DTW error term in (a) MMI database (b) UNS database.

V. EXPERIMENTAL RESULTS

The performance of the proposed methods is assessed
by conducting experiments on the MMI [25], [26] and the
UvA-Nemo Smile (UNS) [27] databases. The MMI [25], [26]
consists of videos with posed FAUs while the UNS contains
videos with posed and spontaneous smiles.

The MMI contains more than 400 videos annotated in
terms of FAUs and the temporal segments in which a subject
performs one or more FAUs in terms of neutral-onset-apex-
offset-neutral indicators. We used 351 of those videos and we
tracked 68 facial landmarks using a variant of the Supervised
Descent Method (SDM) [31]. The tracked landmarks were
used in order to align and scale the frames to a fixed size
template of 169 × 171 pixels. The relevant FAUs used for
each region of the face are as follows:

• Mouth: Upper Lip Raiser, Nasolabial Deepener,
Lip Corner Puller, Cheek Puffer, Dimpler, Lip Corner
Depressor, Lower Lip Depressor, Chin Raiser,
Lip Puckerer, Lip stretcher, Lip Funneler, Lip Tightener,
Lip Pressor, Lips part, Jaw Drop, Mouth Stretch
and Lip Suck

• Eyes: Upper Lid Raiser, Cheek Raiser, Lid Tightener,
Nose Wrinkler, Eyes Closed, Blink, Wink, Eyes turn left
and Eyes turn right

• Brows: Inner Brow Raiser, Outer Brow Raiser and Brow
Lowerer.

UvA-Nemo Smile database contains more than 1000 smile
videos (597 spontaneous and 643 posed) from 400 subjects.
The database does not provide annotations with regards to
temporal segments. Hence, we annotated 100 videos in total,
50 displaying posed and 50 displaying spontaneous smiles, in
terms of temporal segments. Furthermore, we used the same
algorithm to track 68 facial landmarks and align the facial
images.

A. Unsupervised Analysis of Facial Temporal Dynamics
in One Sequence

In this section, the performance of the SFNMF is compared
against that of the NMF, the GNMF [32], and the SFA
for unsupervised facial behaviour analysis. More precisely,
we investigated how effectively each method can detect the
transitions between the temporal phases (i.e., Neutral-Onset-
Apex-Offset) during different facial AUs activation.

The parameters of each method were tuned by using a
validation set. For GNMF we considered a 5-nearest neigh-
bors graph to capture the local geometric structure of data,
a 0 − 1 weighting system for defining the weight matrix and
set parameter λ that regulates the contribution of the two parts
in GNMF cost function to 150. Finally, for all algorithms we
considered projection to a subspace of equal dimensionality
which was set to 50 and 250 and the step sizes of the modified
updates rules were set δ = σ = 10−8.

To facilitate the comparison between the results of each
method and the ground truth, we map the recovered latent
space by each method to the temporal phases of AUs. This
is done by finding for each method the slowest varying latent
feature. To do so, we compute the first order derivative for
each obtained latent variable and select the one that minimizes:
argmini wi LwT

i . We should note that since SFA introduces an
ordering to the derived latent variables sorted by their temporal
slowness, we simply acquire the first identified latent feature
which corresponds to the slowest varying one.

Fig. 5 shows the performance of the examined methods in
terms of capturing the AU temporal phases and in terms of
extracting accurate part based representations on two video
sequences displaying the activation of two different AUs.
More precisely, the results presented in Fig. 5(a) correspond
to a video sequence where the subject performs AU 26
(i.e. Jaw Drop), while results shown in Fig. 5(b) correspond
to the activation of AU 43 (i.e. eyes closed). In each plot the
ground truth (green curve) instances when the AUs tempo-
ral phases transition appear are highlighted with red marks.
As can be observed in both videos the proposed method
outperforms both GNMF and SFA since it detects the temporal
phases more accurately while NMF was not able to detect the
transition between the AU’s temporal phases on both videos.
Moreover, Fig. 5(a) shows the basis images (V) corresponding
to the features that best capture the dynamics of the AU 26.
As can be seen the extracted basis from SFNMF depict better
the activated facial part (mouth) related to AU 26 compared
to other NMF-based algorithms and SFA. Finally, in Fig. 5(b)
we can observe the corresponding basis for the eye-related AU
(AU 43) where it is obvious that the part-based decomposition
from SFNMF produced the better basis image.

Even though the GNMF does not explicitly capture
the temporal dynamics in the visual sequence, the nearest
neighbours of each datum (which are encoded in the k-NN
graph in the GNMF) are usually successive video frames.
Therefore, the temporal information is encoded implicitly. This
fact justifies the good performance of the GNMF. Furthermore,
regarding SFA, it is clear from Fig. 5(b) that the SFA’s basis
image differs significantly from the one obtained by the
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Fig. 5. Extracted features (W) along with the corresponding basis (V) by applying the SFNMF, NMF, GNMF and SFA on a video sequence from the MMI
database on a subject performing: (a) Jaw Drop (AU 26) (b) Eyes Closed (AU 43). The red marks indicate the annotated ground truth (green curves) where
the AU temporal phase changes.

TABLE I

ERROR BETWEEN THE EXTRACTED FEATURES AND GROUND TRUTH ANNOTATIONS FOR EACH TEMPORAL PHASE ON THE MMI DATABASE

FOR K = 50. THE RESULTS COMPARE THE PERFORMANCE OF THE SFNMF AGAINST GNMF, NMF AND SFA ON GROUND TRUTH SHAPE

TABLE II

ERROR BETWEEN THE EXTRACTED FEATURES AND GROUND TRUTH ANNOTATIONS FOR EACH TEMPORAL PHASE ON THE MMI DATABASE
FOR K = 250. THE RESULTS COMPARE THE PERFORMANCE OF THE SFNMF AGAINST GNMF AND NMF ON GROUND TRUTH SHAPE

Fig. 6. Overall error between the extracted features and the annotated ground truth on the MMI database. The plots compare the performance of the SFNMF
against SFA, NMF and GNMF. (a) Mouth-related AUs (b) Eyes-related AUs (c) Brows-related AUs (d) All AUs.

NMF-based techniques. This is because, SFA does not
enforces nonegativity constraints and thus produces holistic
representation which makes latent features difficult to be
interpreted. On the other hand, the latent features of NMF are
much more noisy compared to that obtained by the GNMF
and the SFNMF due to the fact that NMF lacks of smoothing
constraint

Table I and II summarize the results for each temporal phase
where we provide results for Mouth-related AUs, Eyes-related
AUs and Brows-related AUs separately for the MMI database.
Specifically, it reports the mean error for each temporal phase
along with the overall error for the whole performed AU and
the total error for all of the AUs. For measuring the error,
we applied the DTW algorithm between the extracted features
and the ground truth. The presented results indicate that the

SFNMF algorithm performs better than the other methods on
the unsupervised detection of the temporal phases of FAUs,
almost in all temporal phases and for all relevant regions of
the face for both K = 50 and K = 250 as can be seen
in Table I and Table II respectively. Additionally, comparing
these tables we can notice that there was not any significant
improvement in the performance of the applied methods when
setting the number of the desired features to be extracted
to 250, as someone should expect. This is attributed to the
fact that extracting 50 features was sufficient to preserve
more than 90% of the original sequences’ energy. The overall
performance of the examined methods is better visualized in
Fig. 6 which reports the error versus the percentage of the
videos for each region of the face separately. For instance,
Fig. 6(a) shows the error for all of the AUs performed by the
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Fig. 7. Extracted features (W) along with the corresponding basis (V) by applying the SFNMF, NMF, GNMF and SFA on a video sequence from the UNS
database on a subject performing: (a) Spontaneous Smile (b) Posed Smile. The red marks indicate the annotated ground truth where the AU temporal phase
changes.

TABLE III

ERROR BETWEEN THE EXTRACTED FEATURES AND GROUND TRUTH ANNOTATIONS FOR EACH TEMPORAL PHASE ON THE UNS DATABASE FOR K = 50.
THE RESULTS COMPARE THE PERFORMANCE OF THE SFNMF AGAINST GNMF AND NMF ON GROUND TRUTH SHAPE

mouth, Fig. 6(b) shows the error from the Eyes-related AU,
Fig. 6(c) from the Brows-related AU and Fig. 6(d) shows the
overall error for all the AUs.

Finally, Table IV reports the average correlation accuracy
of the bases obtained by the applied methods for the MMI
database. Specifically, the reported results were obtained by
measuring the correlation of the activated facial parts between
the produced basis image and the original one. The results
verify that in average the bases extracted by the SFNMF
algorithm were capable of capturing more accurately the rele-
vant activated facial parts to the performed AU. Additionally,
by inspecting the Table IV, we observe that the results are
consistent with that of in Table I and II, indicating that
the features (W) are faithful representatives for evaluating
qualitatively the extracted bases.

Next we test the performance of the examined methods
in UNS database. Specifically, we applied the methods on
50 spontaneous and 50 posed smile videos. The performance
was measured by applying DTW between the extracted fea-
tures and the annotated ground truth.

Fig. 7 compares the extracted features, of the examined
methods, that best capture the temporal phases when a subject
performs a posed Fig. 7(a) and a spontaneous smile Fig. 7(b),
from the UNS database, respectively. In addition, next to
each feature we can see the corresponding basis image. The
features (W) in Fig. 7(a) indicate that the SFNMF algorithm
outperform the other methods since it detects the dynamics of
the smile more accurately and captures the temporal phases
more smoothly. The same occurs and in the case where the
subject performs spontaneous smile (Fig. 7(b)) which is more
challenging to capture its dynamics accurately due to the fact
that it is consisting of multiple temporal phases (two apex and

TABLE IV

QUANTITATIVE RESULTS AMONG THE BASES OF THE SFNMF, GNMF,
NMF, AND SFA ON THE MMI DATABASE. THE RESULTS COMPARE

THE AVERAGE CORRELATION BETWEEN THE EXTRACTED BASES

AND THE ORIGINAL IMAGES SEPARATELY FOR THE

MOUTH, EYES AND BROWS RELATED AUS

two offset phases). Moreover, the basis images extracted from
SFNMF were the only ones that depict the correct activated
facial part (i.e. mouth) for both Spontaneous and Posed smiles,
as can be seen in Fig. 7 (a) and Fig. 7 (b), respectively.

The overall results are summarized in Table III which
reports the mean error for each temporal phase and for
both Posed and Spontaneous instances. Similarly to the MMI
experiments, the results indicate that the SFNMF outperforms
the other methods on the unsupervised detection in almost all
temporal phases. The performance of all videos for each of the
compared methods can be better seen in Fig. 8. Particularly,
Fig. 8(a) shows the error for all of the posed and Fig. 8(b)
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Fig. 8. Overall error between the extracted features and the annotated ground
truth on the UNS database. The plots compare the performance of the SFNMF
against SFA, NMF and GNMF. (a) Posed smiles (b) Spontaneous smiles.

TABLE V

QUANTITATIVE RESULTS AMONG THE BASES OF THE SFNMF, GNMF,
NMF, AND SFA ON THE UNS DATABASE. THE RESULTS COMPARE

THE AVERAGE CORRELATION BETWEEN THE EXTRACTED
BASES AND THE ORIGINAL IMAGES SEPARATELY FOR

THE SPONTANEOUS AND POSED SMILES

shows the error for all of the spontaneous smiles, respectively.
For better clarity, we zoomed in the performance of the
SFNMF and GNMF as can be seen in the top right corner for
both graphs. Finally, the relative results for the quantitatively
evaluation of the bases for the UNS database are presented
in Table V.

B. Temporal Alignment of Facial Events for Two Sequences

In this section we provide experimental results on aligning
pairs of videos from the MMI and UNS databases, where
the same AU is activated. The aim of the experiment is
two fold: (a) to test various dimensionality reduction and
component analysis methods for temporal alignment and (b) to
compare the performance of simultaneous decomposition
and alignment procedures with the ones that first decompose
the signals and then apply DTW. To this end, we compare
a number of component analysis that are relevant to the
problem, namely (a) CTW and PCA+CTW. (b) Deterministic
Slow Feature analysis (SFA) [6] plus DTW (SFA+DTW).

(c) NMF plus DTW (NMF+DTW). (d) Joint NMF and
DTW, which produced by the optimisation of the proposed
problem (30) setting L(1) and L(2) to zero. (e) Graph
Regularised NMF (GNMF) [32] plus DTW. (f) Joint GNMF
and DTW, which produced by the optimisation problem (30)
setting L(1) and L(2) equal to a graph Laplacian. (g) Graph
regularised NMF using the graph in (10) plus DTW (so-called
SFNMF [33]). (h) The proposed SFNMF-TW.

We have also tested the probabilistic models in [4] and [11]
but due to the very high dimensionality of the inputs their
performance was not satisfactory.1 Finally, we tested the
methodology presented in [17] but since our videos did not
contain any gross errors we did not observe any improvement
over CTW. Thus, we do not report the performance for the
methods [4], [11], [17] in order not to clutter our graphs.
To the best of our knowledge such thorough comparison of
component analysis techniques applied for temporal alignment
has not be conducted before in the literature.

We used a two pairs of videos (one for MMI and one
for UNS), not used in the test phase, as a validation step
to fine tune the involved parameters. In the case of GNMF
methods we have tested various approaches to build the graph
Laplacian. That is, we used the heat kernel, dot-product ker-
nels, 0–1 weighting etc. and we tested various neighbourhood
sizes. The best was a 5-nearest neighbours graph to capture
the local geometric structure of data using a 0 − 1 weighting
system for defining the weights. For all joint NMF and DTW
techniques the parameter λ that regulates the contribution of
the two parts cost function was set equal to 100 and the step
sizes δ and σ equal to 10−8. Furthermore, the dimensionality
of the latent space was set equal to 50. The dimensionality of
CTW and SFA was set to K = 15 and K = 30 for MMI and
UNS, respectively. It is worth noting that for CTW we had
always to apply a PCA step beforehand otherwise the algo-
rithm performed poorly. All joint algorithms were allowed to
run until convergence which was determined by monitoring the
objective function improvement between successive iterations.
The experiments were conducted in 485 pairs of videos from
MMI depicting the same FAUs and 100 pairs of posed and
100 pairs of spontaneous smiles from UvA-Nemo.

1) Experiments in MMI: We present the experiments in
MMI according to the region of the face the FAU depicts
(i.e., mouth, eyes and brows related-AUs separately), as well as
overall results from all FAUs. In the first set of experiment we
measured the objective alignment error (i.e., the error produced
by the DTW normalised with the number of dimensions) for
each of the compared method with respect to the percentage of
aligned pairs of videos.2 The evolution of the errors is plotted
in Fig. 11.

As can be observed all the joint decomposition and
alignment procedures (solid lines) vastly outperformed the
application of alignment algorithms on the features produced
by the signal decomposition (for instance please inspect
the difference in the performance by comparing the results

1Actually in [4] and [11] the aligned signals were of very low-
dimensionality.

2For example the point (60%,1) of graph mean that 60% of the pairs have
error lower than or equal to 1
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Fig. 9. Aligning the AU20 (Lip stretcher) performed by two different subjects. (Top row) Basis obtained by the tested methods (Mid row) Original extracted
features (Bottom row) Aligned extracted features.

TABLE VI

AVERAGE ALIGNMENT ERROR IN MMI DATABASE

between the NMF+DTW (blue dashed line) and jointly
NMF+DTW (blue solid line) in Fig. 11(a)). Finally, The
average DTW error for all the videos of MMI database
is summarised in Table VI. As can be seen the proposed
methodology vastly outperforms all other tested methods.

The DTW error provides as only an indication of the
efficacy of the tested algorithms. Hence, we further evaluated
the accuracy of each algorithm by using a robust metric used in
recent works [4]. In more detail, lets assume two videos, with
features W(1) and W(2) and AU annotations A(1) and A(2).
All tested methods using these features recover the alignment
matrices �(1) and �(2). By applying these matrices on the AU
annotations (i.e., A(1)�(1) and A(2)�(2)) we know to which
temporal phase of the AU each aligned frame of each video
corresponds to. Therefore, for a given temporal phase (e.g.,
neutral), we have a set of frame indices which are assigned
to the specific temporal phase in video 1, N (1)p and video 2,
N (2)p. The accuracy is then estimated as

|N (1)p ∩ N (2)p|
|N (1)p ∪ N (2)p| (37)

which essentially corresponds to the ratio of correctly aligned
frames to the total duration of the temporal phase p across the
aligned videos.

The alignment accuracy (37) obtained for all the examined
methods and for all temporal segments in the MMI database is
shown in Fig. 12. As before the results are presented for vari-
ous facial parts (mouth, eyes and brows) separately. The darker
colours are use to show the accuracy of joint decomposition

and alignment techniques, while the light colours are used
for techniques that treat alignment and decomposition as
separate steps (e.g., light red represents GNMF+DTW while
darker red joint GNMF and DTW). It can be verified that the
proposed methodology outperforms all others.

Finally for better inspection of the bases and the latent
features we provide two experiments of aligning pairs of
videos where the subjects perform the same AU. Specifically,
Fig. 9 compares the obtained results, when aligning two
videos of two subjects performing FAU 20 (Lip stretcher),
employing the proposed framework for joint alignment with
the obtained results when aligning the sequences after having
extracted their features (disjoint alignment). The top row
shows bases images of the part-based decomposition extracted
by the tested methods. As can be seen the bases extracted
by the proposed methodology (SFNMF-TW) are the only
ones who both correspond to the common facial part that is
activated (i.e, mouth) compared to the other joint methods.
Additionally, by comparing the extracted bases of the joint
methods with the disjoint ones we notice that the bases of
the disjoint methods are unrelated to each other. This do not
occur in the methods that perform joint decomposition and
alignment, regardless their quality, since those two procedures
are applied simultaneously and are dependent. The mid and
the bottom rows plot the two latent features, one for each
behavioural sequence (blue for the left and red for the right),
over the whole video for both joint and disjoint methods
before and after applying the alignment process, respectively.
Comparing the joint methods to each other can be verified
that the proposed methodology (SFNMF-TW) achieves better
alignment since it provides smoother latent spaces. Finally,
by comparing the latent features between the joint and the
disjoint methods we can see that all the joint methods managed
to extract better latent features (less noisy). This is attributed
to the iterative nature of this framework which allows both
the temporal segmentation and the alignment process to be
gradually improved.

The second indicative example can be seen in Fig. 10
where the subjects perform AU 5 (Upper Lid Raiser). As can
be seen from the first row, the features extracted from the
proposed methodology detect the transitions between the tem-
poral phases (Onset, Apex, Offset and Neutral) during the
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Fig. 10. Aligning the AU5 (Upper Lid Raiser) performed by two different subjects.(first row) Original extracted features (Second row) Aligned extracted
features. The green marks indicate the annotated ground truth where the AU temporal phase changes (N - Neutral phase, ON - Onset phase, AP - Apex phase,
OF - Offset phase).

Fig. 11. Overall results obtained when aligning pairs of videos from MMI
database where the same AU is activated in (a) Mouth-related AUs (b) Eyes-
related AUs (c) Brows-related AUs (d) All the AUs.

AU activation more accurately and more smoothly compared
to other joint methods and hence, these features can be
better be aligned as can been observed in the second row
of the Fig. 10. Moreover, similar to the previous qualitative
experiment, the methods which are subject to independent
alignment produce more noisy feature components compared
to the respective joint methods (e.g inspect the features of
jointly GNMF+DTW vs GNMF+DTW).

2) Experiments in UNS Database: A similar experimental
setup was used in UNS database to test all the alignment
algorithms in videos displaying more complex expressions,
that is of both posed and spontaneous smiles. Fig. 13 plots
the DTW error curves versus the percentage of the videos for
both posed and spontaneous smiles, while Table VII provides
the average DTW errors.

Additionally, Fig. 14 provides the corresponding graphs
of the alignment accuracy metric (37). By comparing these
figures we notice that the results in alignment error for the
spontaneous facial displays (Fig. 13 (b)) are not in line with

Fig. 12. Accuracy of the tested methods in alignment tasks for all temporal
phases in (a) Mouth-related AUs (b) Eyes-related AUs (c) Brows-related AUs
(d) all AUs.

Fig. 13. DTW alignment error for the pairs of videos of the UNS database
for (a) posed smiles (b) spontaneous smiles.

the results which measure the alignment error (Fig. 14 (b))
compared to the respective results for the posed facial displays.
Specifically, by inspecting the Fig. 13 (b) we can see that
GNMF outperforms SFNMF when combining with DTW in
terms of the alignment error. This is mainly due to the fact
that the spontaneous facial instances consist of more that one
temporal phases which makes the alignment error in such
cases not the most accurate mean to evaluate the performance
of the alignment methods. Therefore, the most precise way
to measure the performance of the examined methods is by
measuring their accuracy when aligning each temporal phase
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TABLE VII

AVERAGE ALIGNMENT IN UNS DATABASE

Fig. 14. Overall accuracy obtained when comparing the examined methods
in alignment tasks for all temporal phases in (a) Posed Smiles (b) Spontaneous
Smiles.

separately. Such evaluation is depicted in Fig. 14 (b). More
precisely, this figure shows clearly that every temporal phase is
better aligned when combining SFNMF with DTW compared
to any other disjoint method, which in turn indicates that the
features produced by SFNMF describe the temporal evolution
of the spontaneous facial activities more accurately.

Finally, the experiments in UNS database demonstrate once
more that it is better to perform joint decomposition and
alignment than applying these two tasks separately and that
the proposed SFNMF-TW vastly outperforms both the tested
methods and state-of-the-art methods such as CTW.

VI. CONCLUSION

In this paper, the SFNMF has been proposed in order to
learn slow varying parts-based representations of time varying
facial sequences. The proposed method minimizes the data
reconstruction error and the temporal variance of the derived
latent features. The SFNMF has been applied in unsupervised
facial behaviour dynamics analysis. Furthermore, the SFNMF
has been extended in order to hadle temporally misaligned
video sequecnes depicting the same facial event. This approach

has been tested on temporal aliment of facial behaviour. Both
the SFNMF and the SFNMF-TW outperforms the methods that
they have been compared to. Finally, it is worth mentioning
that an exciting area for further research on the topic is how to
design non-linear dynamical systems, e.g. using deep neural
network architectures, which take into account the constraints
we have imposed on our model for unsupervised extraction
and analysis of the dynamics of facial behaviour.

APPENDIX I
CONVERGENCE ANALYSIS OF ALGORITHM 1

Here in, we discuss the convergence of the algorithm 1
beginning by showing that from Wt to Wt,r , the components
do not satisfy the KKT conditions change and the (14) is
strictly decreased while elements satisfying KKT conditions
do not.

Our analysis will make use of the auxiliary function similar
to that introduced by Lee and Seung [5] as follows

G(w,wt ) ≡ F(wt )+ (w − wt )
T ∇F(wt )

+1

2
(w − wt )

T D(w − wt ) (38)

where D is a diagonal matrix and in our case is given by

Dkk = [VT Vwt + λwt L+]k

[wt ]k
∀ k = 1, . . . , K (39)

and the function F(w) is given by

F(w) = 1

2
(||x − Vw||2 + λtr[wLwT ]) (40)

where x is a column of X and V = Vt assuming that Vt is
fixed.

The importance of the auxiliary function can be perceived
due to the following lemma

Lemma 1: If G is an auxiliary function of F , then F is
nonincreasing under the update

wt = argmin
w

G(w,wt ). (41)

Proof:

F(w) ≤ G(w,wt ) ≤ G(wt ,wt ) = F(wt ) (42)

�
Minimising G(w,wt ) with respect to w leads to the update

rule in 21. In addition, if F(wt )k �= 0, then [wt,r ]k �= [wt ]k .
The limitation of this auxiliary function is that it is not well
defined when [wt ]k . To address that and also to deal with
indices not satisfying KKT conditions we define the following
auxiliary function

G(w,wt ) ≡ F(wt )+ (w − wt )
T
I ∇F(wt )I

+1

2
(w − wt )

T
I DI I (w − wt )I (43)

where

I ≡ {k|[wt ]k > 0,∇F(wt )k �= 0 or [wt ]k = 0,

∇F(wt )k < 0} = {k|[wt ]k > 0,∇F(wt )k �= 0} (44)
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and DI I is a diagonal matrix with elements

DI I ≡
{ [VT Vwt +λwt L+]k+δ[wt ]k

, i f k ∈ I

0, i f k /∈ I
(45)

This auxiliary function is well defined when [wt ]k = 0 and
∇F(wt )k < 0 and [wt ] can be changed as well. Finally, the
only thing left is to ensure that (43) satisfies the nonincreasing
property (42) which is shown by the following theorem

Theorem 1: For given δ and σ , wt be a column of Wt in
Algorithm 1 and I ′ ≡ {1, . . . , k}\I , then

argmin
wI

G(w,wt ) = (wt )I − D
−1
I I ∇F(wt )I (46)

for the update rule wt,r given by (27) it holds that

(wt,r )I = argmin
wI

G(w,wt ) and (wt,r )I ′ = (wt,r )I ′ (47)

and

F(wt,r ) ≤ G(wt,r ,wt ) ≤ G(wt ,wt ) = F(wt ) (48)

Proof: As DI I is positive definite, G(w,wt ) is a strictly
convex function of wI , and has a unique minimum satisfying

DI I (w − wt )I + ∇F(wt )I = 0 (49)

Therefore, (46) holds. Combining this result with the update
rule in (27) implies the assumption (47).

Similar to [30], [34], the inequality property (48) will be
shown by comparing the Taylor series expansion of F(w),

F(w) = F(wt )+ (w − wt )
T
I ∇F(wt )I

+1

2
(w − wt )

T (VT V + λL)(w − wt ) (50)

with (43) for any w with wI ′ = (wt )I ′ we have

G(w,wt )−F(w)= 1

2
(w − wt )

T
I (D−VT V−λL)I I (w − wt )I

(51)

therefore for this comparison we need to show that the matrix
produced in our case (D − VT V − λL)I I is positive definite
which is equivalent to show that

[VT Vwt + λwt L+]k + δ

[wt ]k
≥ VT V + λL (52)

We have

[VT Vwt ]k + δ =
∑

a∈I

([VT Vwt ]a + δ) ≥ [wt ]kVT V (53)

and

λ[wt L+]k = λ
∑

a∈I

[wt L+]a ≥ λ[wt ]kL+ ≥ λ[wt ]k(L+ − L−)

= λ[wt ]kL (54)

Therefore, (52) holds and G(w,wt ) ≥ F(w) �
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