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Abstract
To deal with the data scarcity problem for Speech Emotion Recognition, a novel data enrichment perspective is proposed in this paper
by applying Empirical Mode Decomposition (EMD) on the existing labelled speech samples. In doing this, each speech sample is
decomposed into a set of Intrinsic Mode Functions (IMFs) plus a residue by EMD. After that, we extract features from the primary
IMFs of the speech sample. Each single classification model is trained first for the corresponding IMF. Then, all the trained models of
the IMFs plus that of the original speech are combined together to classify the emotion by majority vote. Four popular emotional speech
corpora and three feature sets are used in an extensive evaluation of the recognition performance of our proposed novel method. The
results show that, our method can improve the classification accuracy of the prediction of valence and arousal with different significance
levels, as compared to the baseline.
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1. Introduction
Speech Emotion Recognition (SER) has attracted increas-
ing interest in the context of speech processing and ma-
chine learning (Han et al., 2014), and is going to be imple-
mented in real-life applications like video games (Schuller
et al., 2015), health care systems (Tacconi et al., 2008),
and service robots (Marchi et al., 2014). One bottleneck
of these applications, however, is the scarcity of labelled
data that are yet necessary to build robust machine learning
systems (Sainath et al., 2015).
To overcome the problem of data scarcity for SER, some
studies have been done in the past few years. The work
in (Schuller et al., 2011) attempted to make efficient use of
multiple available small size of annotated databases to de-
velop a robust model by the strategy of pooling or voting.
Nevertheless, the majority of speech emotional databases
that are publicly available at present have only a few hours
of annotated instances (Schuller et al., 2010). In contrast to
these limited labelled data, unlabelled data seem countless
and can be easily collected. To exploit the large amount of
unlabelled data, the approach of Semi-Supervised Learning
(SSL) (Zhang et al., 2011) and its advanced derivations like
Co-Training (Liu et al., 2007) were proposed and investi-
gated, and showed much better performance than the ap-
proach which merely uses labelled data. Later on, Active
Learning algorithms by sparse instance tracking (Zhang
and Schuller, 2012) and label uncertainty (Zhang et al.,
2015) were studied with aim at achieving higher accuracy
with less human work for labelling the selected samples.
To further deal with this data scarcity problem, the present
paper proposes a novel prospective to utmost exploit the
existing labelled speech samples. It uses Empirical Mode
Decomposition (EMD) to decompose the original speech
sample into a set of Intrinsic Mode Functions (IMFs), each
of which can be regarded as a specific counterpart of the
original speech sample in a limited frequency band(Huang

et al., 1998), which could provide additional information
for the systems. Inspired by the idea of P. Flandrin et al –
EMD wokrs as a filter bank (Flandrin et al., 2004), we can
consider EMD as the operation which decomposes the non-
linear and nonstationary speech sample into the quasi-linear
and quasi-stationary components – IMFs. In doing so, the
number of speech samples will be multiple-fold increased.
In the following, we investigated the proposed data en-
richment method for SER in terms of three items: 1) de-
compose each original speech into a set of IMFs (plus a
residue); 2) extract three popular feature sets not only on
the original speech sample but also on its primary IMFs; 3)
apply to four widely used speech emotional corpora (spon-
taneous and unspontaneous).
The remainder of the paper is organized as follows. Section
2 introduces the method of EMD for enriching the speech
samples and the following emotion recognition based on
the enriched samples. The performance of the proposed
method is evaluated by three feature sets and four popular
emotional corpora and then compared with baseline results
in Section 3. Based on the recognition results, we discuss
the performance of our method and make conclusions at the
end of Section 4.

2. Empirical Mode Decomposition for Data
Enrichment

Since the voiced part of the speech is more important to
analyse emotion and to save computation, only the voiced
parts of the recordings are decomposed by EMD in the
present paper. Furthermore, the decomposition speed of
EMD strongly depends on the length of the sample. The
sum of the time of decomposing each single voiced part
is much less than the time of decomposing the sum of all
voiced parts.



2.1. Localization of Voiced Parts
To detect and locate the voiced parts in a speech sample,
one method, named YAAPT (Yet Another Algorithm for
Pitch Tracking) (Zahorian and Hu, 2008), is applied. It
was originally issued to robustly track the fundamental fre-
quency F0 of the target speech. We can use the results
of YAAPT to determine the positions and durations of the
voiced parts in the speech.
A discrete speech sample is denoted as x(n) with n =
1, 2, · · · , N . Without loss of generality, the algorithm
YAAPT can be treated as an abstract function f{·} which
maps the speech x(n) to its fundamental frequency F0:

F0(m) = f{x(n)}, (1)

where m = 1, 2, · · · ,M and the relationship between M
and N depends on the length of and the overlapping of the
sliding window in YAAPT. Then the nonzero elements in
F0(m) are mandatorily set to 1 and the normalized F0(m)
is written as F̂0(m) which consists of 0 and 1 only. Then it
calculates the finite difference of F̂0(m), ∆F̂0(m) with just
three values -1, 0, and 1. In the value set of ∆F̂0(m), most
elements are 0 and only a few ones are -1 and 1, which are
in pairs. The value 1 indicates the starting of one voiced
part and the following -1 as its ending. Therefore, once the
indices of the elements 1 and -1 are fully determined, the
starting and ending indices of all the voiced parts will be
easily calculated by using Eq.(1) for the original speech.
After that, the speech is segmented based on these voiced
infromation. Due to the space limit, the algorithm YAAPT
is not introduced here in detail.

2.2. Data Enriching by EMD
After detecting the voiced parts of recording, an derived
EMD algorithm called CEEMDAN (Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise) is
applied to decompose the truncated voiced parts. The ad-
vantage of CEEMDAN is that it not only can effectively
remove the mode mixing from IMFs, but also provides less
IMFs than EMD, which will save more calculation for the
following feature extraction and emotion classification. For
the details of CEEMDAN, the readers are invited to refer to
the paper (Torres et al., 2011).
Here is the truncation of the i-th voiced part xi(l) with i =
1, 2, · · · , Ni. Ni denotes the total number of the voiced
parts in the speech sample. After executing CEEMDAN,
we can rewrite xi(l) as

xi(l) =

K∑
k=1

c[i,k](l) + ri(l), (2)

where c[i,k](l) stands for the k-th IMF of the i-th voiced
part xi(l), K for the total number of the IMFs, and ri(l) for
the decomposition residue of xi(l).
The characteristic frequencies of IMFs decrease with the
increasing of their indices k. For emotion recognition, the
IMFs whose characteristic frequencies are lower than the
fundamental frequency F0 are useless. They occupy very
little proportion of the energy of the original speech. More-
over, they are inaudible to us, no matter how large ampli-

fication coefficients are applied. To save cost, these trivial
IMFs are deliberately ignored from now on.
If the sampling frequency of the original speech is very
high, for instance 44.1 kHz, its first several IMFs also need
to be discarded. The IMFs whose characteristic frequencies
are higher than 10 kHz, act as noise and can not provide
useful information for the following emotion classification.
When we extract their features in terms of the feature set
– eGeMAPS (Eyben et al., 2016) for example, most fea-
tures could not get valid values. Therefore, only the middle
IMFs are kept as the primary ones for the following feature
extraction and emotion classification. In current stage, the
selection of the primary IMFs depends on their energy and
audio content. When the sampling frequency is 16 kHz or
less, the selection of the primary IMFs starts from IMF 1.
Note that the number of the primary IMFs is suggested to
be odd for the benefit of the following majority vote.
After determining the primary IMFs of all voiced parts,
we combine them together to generate the IMFs of the
original speech in terms of the sequence of the voiced
parts. For instance, the k-th IMF ck(n) of the speech
sample x(n) can be represented by c[i,k] as ck =
[0, c[1,k], 0, c[2,k], 0, · · · , c[Ni,k], 0], where ck is the vector
denotation of ck(n) and the vector 0 replaces the corre-
sponding unvoiced part in the original speech. Then the
following feature extraction will be directly conducted on
the reconstructed IMFs ck one by one.

2.3. Speech Emotion Recognition
After extracting the features from the speech samples and
their primary IMFs by using openSMILE (Eyben et al.,
2010), we begin to train classification models for the origi-
nal speeches and their IMFs one by one. That means each
primary IMF only employs its own features to train a spe-
cific model, but does not employ the features of the other
IMFs and not share a common model with the other IMFs.
We apply a classic algorithm – Support Vector Machine
(SVM) to execute the emotion classification for each single
IMF. The whole classification can be represented as follows

H(v) = arg max
y∈Y

(w·1(y = h(v)+

R∑
i=1

1(y = hi(vIMF ))),

(3)
where v and vIMF are the feature vectors of the original
speech and of its primary IMFs, respectively; the symbol
Y denotes a prediction space; the value of 1(a) is 1 if a is
true and 0 otherwise; w represents the weight of the original
speech sample; and R is the number of the primary IMFs.
Note that the primary IMFs of the speech sample are treated
equally in the majority vote and their weighting coefficients
are all set to 1.
Although the original speeches can provide much informa-
tion as references for emotion recognition, nobody knows
how much useful information the original samples can pro-
vide, comparing with that of their IMFs, to the major-
ity vote of the final emotion classification. To investi-
gate the significance of the original speeches on the major-
ity vote, we employ three different weighting coefficients
(w = 0, 1, 2) here. In detail, w = 0 means that no origi-



nal speech takes part in the majority vote; w = 1 suggests
that the original speeches are treated the same as their own
IMFs in the majority vote; w = 2 signifies that the origi-
nal speeches are considered to be more important than their
own IMFs in the majority vote. It can be replaced by other
coefficients, such as w = 3 and w = 4, but their final emo-
tion recognitions improve little.

3. Empirical Experiments
In this Section, we focus on the performance evaluation of
the method introduced in Section 2.

3.1. Emotional Corpora and Feature Sets
To comprehensively evaluate our method, four emotional
corpora were applied here: Geneva Multimodal Emotion
Portrayals (GEMEP) corpus (Bänziger et al., 2012), the
eNTERFACE05 Audio-Visual Emotion Database (Martin
et al., 2006), the Vera am Mittag (VAM) German audio-
visual emotional speech database (Grimm et al., 2008), and
FAU AIBO corpus (Batliner et al., 2008). The first two cor-
pora (GEMEP and eNTERFACE) are unspontaneous, but
the last two (VAM and FAU AIBO) are spontaneous. Their
introduction is listed in Table 1.
The selected feature sets are the popular ones: a) eGeMAPS
(Eyben et al., 2016) with 88 highly efficient feature, b) In-
terSp09 (Schuller et al., 2009) with 384 parameters used
for the 2009 INTERSPEECH Emotion Challenge, and c)
InterSp13 (Schuller et al., 2013) with 6373 parameters con-
sequently employed for the 2013-2015 INTERSPEECH
Paralinguistics Challenges. To extract these features, the
toolkit of openSMILE (Eyben et al., 2010) was imple-
mented in the present investigation.

3.2. Performance Evaluation
As to the classifier, we use the standard SVM initially
trained with a Sequential Minimal Optimization (SMO) al-
gorithm with a linear kernel and a complexity constant of
0.05. In terms of performance evaluation, we use the Un-
weighted Average Recall (UAR).
Table 2 shows the SER performance of our approach based
on data enrichment. From the table, we find three points:

1) Generally speaking, our proposed approach could de-
liver better results in comparison with the baseline by
using three different feature sets. Particularly, InterSp13
shows the best results not only of the baseline, but also
of the improvement of our approach.

2) The proposed approach for the task of valence performs
better than that of arousal: 10 wins out of 12 cases for
valence vs. 5 wins out of 9 cases for arousal. Particu-
larly, the performance improvement on the database of
FAU AIBO shows an significance level at 0.01 when us-
ing InterSp13 in all three cases (w = 0, 1, 2).

3) The weighting coefficients apparently affect the emo-
tion recognition. The weighting coefficient w = 2
works best and it offers two significant improvements:
the valence on FAU AIBO and eNTERFACE. Instead,
without taking into account the original speeches (i.e.
the weighting coefficient w = 0), the accuracy of the

emotion recognition is improved trivially, in addition to
the valence on FAU AIBO with InterSp13.

4. Discussion and Conclusions
Based on the findings in Subsection 3.2, we further discuss
the results of the proposed method.
As pointed by M. Goudbeek and K. Scherer, the arousal
mainly depends on the fundamental frequency F0 and in-
tensity measures, but the valence are related to duration and
spectral balance (i.e. spectral shape parameters) (Goudbeek
and Scherer, 2010). The function of EMD is to decompose
a signal into a set of analytical components – IMFs. After
analysing the characters of all IMFs in the time and fre-
quency domains and listening to their audio contents, we
find that only one IMF strongly correlates the fundamental
frequency F0 of the original speech sample, for example,
IMF 10 at the sampling frequency 44.1 kHz and IMF 6
at 16 kHz. Thus the other primary IMFs can not provide
valid values for the parameter F0 and the provided values
are usually the integer times of the fundamental frequency
of the original speech.
The intensity of the original speech is equal to the sum of
the intensity of all IMFs and the residue in terms of the
superposition principle. When the intensity measures of
the primary IMFs are calculated, their values are less than
that of the original speech. Therefore, the proposed method
does not work quite well on the recognition of arousal, al-
though the majority vote can correct the distortion in the
feature values partly.
Instead, no matter how EMD is executed, the durations of
utterances in the selected IMFs basically keep the same as
those in their original speech samples. As pointed out by P.
Flandrin et al. (Flandrin et al., 2004), EMD works as a filter
bank. The spectral shape of each primary IMF keeps sim-
ilar with that of the original speech in the same frequency
band where the IMF stays. Furthermore, each selected IMF
can provide more details of spectral shape in their work-
ing frequency band, i.e. more bins in the specific frequency
band. That means the primary IMFs provide more accurate
spectral information for the following valence recognition.
That is the reason why the proposed methods outperforms
the baseline on the valence recognition, especially the va-
lence recognition on the corpus FAU AIBO with the feature
set InterSp13.
Second, involving the original speech samples is signifi-
cant for the majority voting. As the applied feature sets are
not fully compatible to the primary IMFs, we need to take
their original speeches as the references. To highlight the
significance of the references, it is better to endow more
weighting to the original speeches. Obviously, it is only the
temporary way to combine the original speeches into the
majority vote for the emotion recognition, as we have not
found the most suitable feature set for the proposed method
until now. In future, we only apply the features extracted
from the primary IMFs to recognize emotions, but without
any features of their original speech.
The idea feature set for our method should meet at least two
criteria: 1) the features extracted from the primary IMFs
are enough for the following emotion recognition; 2) the
recognition accuracy of our method with the idea feature



Corpus Lan Emotion # Arousal # Valence # All # m # f Rec
- + - +

GEMEP Fr acted 2,520 2,520 2,520 2,520 5,040 5 5 studio
eNTERFACE En induced 425 852 855 422 1277 34 8 studio
VAM De natural 501 445 875 71 946 15 32 noisy
FAU AIBO De induced 5,823 12,393 18,216 21 30 studio

Table 1: Overview of the selected emotion corpora (Lan: language, Rec: recording environment, f/m: (fe-)male
subjects).

Corpus Arousal [%] Valence [%]
Base w = 0 w = 1 w = 2 Base w = 0 w = 1 w = 2

(a) eGeMAPS
GEMEP 79.0 80.3 80.1 79.9 61.3 61.3 61.6 61.8

eNTERFACE 71.5 68.2 68.3 68.3 64.2 66.8 68.3 69.7∗
VAM 79.5 73.0 74.2 75.4 48.4 50.6 46.0 41.4

FAU AIBO 68.3 67.3 67.5 67.8
(b) InterSp09

GEMEP 82.4 81.0 81.4 81.7 63.0 64.1 65.3 66.4
eNTERFACE 73.7 71.8 73.5 75.2 71.0 63.3 65.9 68.5

VAM 68.6 72.5 72.2 71.9 40.1 46.6 44.9 43.2
FAU AIBO 68.5 68.3 68.6 68.8

(c) InterSp13
GEMEP 79.2 80.8 81.8 82.9 66.2 66.2 66.9 67.6

eNTERFACE 80.0 69.0 72.7 76.3 75.0 70.2 73.3 76.5
VAM 75.6 80.4 79.9 79.3 47.5 51.2 50.4 48.4

FAU AIBO 65.4 68.0∗∗ 67.6∗∗ 67.3∗∗

Table 2: The Unweighted Average Recall (UAR) of proposed data enrichment approach on four emotional corpora
(GEMEP, eNTERFACE, VAM, and FAU AIBO) by the combination of Empirical Mode Decomposition and Majority
Vote with different weighting coefficients defined on the original speech sample: w = 0, 1, 2. The feature sets are (a)
the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), (b) the INTERSPEECH 2009 Emotion Challenge
(InterSp09), and (c) the INTERSPEECH 2013 Computational Paralinguistics Challenge (InterSp13). The corresponding
baseline results are also listed here. The symbols of * and ** denote the significant levels of performance improvement at
0.05 and 0.01 by one-tailed hypothesis, respectively.

set outperforms (or at least is comparable with) that of the
currently popular methods, for example those listed in Ref.
(Eyben et al., 2016).
At last, short conclusions are made here. We proposed
a data enrichment approach by using EMD to decompose
each original speech sample into a set of IMFs plus a
residue, which can serve as additional speech samples to
enlarge the size of training sets. Four databases with a va-
riety of languages and speech styles, and three popular fea-
ture sets are implemented to evaluate the performance of
the proposed approach. The experiments show that method
can remarkably increase the recognition accuracy of emo-
tion speeches. It works well not only with the nonsponta-
neous emotional corpora (GEMEP and eNTERFACE), but
also with the spontaneous ones (VAM and FAU AIBO). Fu-
ture work will exploit new feature set to fit our decomposed
samples – the primary IMFs.
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