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Abstract
Automatic diagnosis of Autism Spectrum Conditions
(ASC) from the voice is still in its infancy. The compa-
rably few studies up to now focus mostly on the relevance
of acoustic features and optimal learning algorithms. How-
ever, cross-lingual studies with a higher number of speak-
ers are a white spot in the literature. The present contri-
bution thus focusses on extensive cross-lingual evaluations
based on four databases collected in English, French, He-
brew, and Swedish. The datasets contain speech of chil-
dren with ASC and typically developing (TD) children
matched in both age and gender. Their speech further in-
tentionally varies in emotion. This introduces an additional
challenge besides the change of languages. We demon-
strate automatic ASC vs TD classification to be feasible
despite such variation with a remaining error.

Keywords: Autism Spectrum Condition, Automatic
diagnosis, Cross-lingual analysis

1 Introduction
Autism is a pervasive developmental disorder influencing
especially social and communicative skills of the affected
person. It may refer to different level of severities, usually
summarised under one umbrella term: “autism spectrum
disorders” (ASD) or, preferably, “autism spectrum condi-
tions” (ASC) [1]. DSM-4 distinguished ASC subtypes,
such as the Asperger syndrom, which reveals later in life
than ASC [2]. Though ASC are generally reported to be
lifelong, there are some reported cases where children suf-
fering from ASC regain social and communication skills,
and reach the range of cognitive, adaptive and social skills
as met for typically developing (TD) children [3].

Diagnose of people suffering from ASC is usually trig-
gered by behavioural interventions [4]. Therefore, it is nec-
essary to have a simple and universal method to care and
monitor the different types of ASC. Autism usually mani-
fests itself especially in the prosody of children’s or adults’
speech, such as pitch and rhythm [5]. A typical trait of peo-
ple under ASC is, e. g., a monotonous voice. Research in
the field has proved that individuals on the spectrum very
often experience significant difficulties in both recognising
and expressing emotions from different modalities, such as
facial expressions, speech, and gestures.

In recent years, much research work has been done in
the field of automatic recognition and monitoring of emo-
tions from speech and helping children under ASC to im-
prove their social skills. Examples for already existing
systems are the Rachel Embodied Conversational Agent
(ECA) [6] and the Mind-Reading software [7]. Those aim
to provoke a specific emotion through an interactive agent
and to teach people under ASC to recognise complex emo-
tions of their conversational partner.

An internet-based platform assisting children with
ASC to improve their social and emotional communica-
tion skills was developed within the scope of the ASC-
Inclusion project [8–10]. This platform provides an in-
teractive game to give scores on the typicality and on the
naturalness of the presented emotions. The ASC-Inclusion
platform combines several recent technologies in one vir-
tual environment, combining multimodal emotion analysis
and giving feedback on the appropriateness of the expres-
sions, while also providing ideas for improvement of the
vocal, facial, and gestural behaviour.

However, the automatic analysis of children’s speech is
highly challenging, as both acoustic and linguistic charac-
teristics are correlated with their age and gender [11]. Per-
formance of automatic recognition systems is additionally
impaired by background noise, present in the children’s
rooms or at their doctor’s offices. In [12, 13], the relevance
of selected prosodic features with respect to their signifi-
cance in emotion classification of children under ASC was
investigated.

For computational research purposes, only few
databases of children under ASC – and a corresponding
control group – exist. One corpus in French language is
the CPSD database, which has been proposed to automat-
ically quantify the differences in the imitation of prosodic
contours between groups of ASC and TD children [14, 15].
Another version of this corpus, CPESD, has been recently
proposed for the study of spontaneous emotions [16]. A
corpus in English language, the USC CARE Corpus [17],
was used to investigate how cues in prosodic speech of
children under ASC can be quantified during spontaneous
interaction [18].

In this article, we would like to evaluate the per-
formance of data-based ASC recognition systems across
four different languages: English, French, Hebrew, and
Swedish. A similar study based on three languages has
been performed in [19], however, they did not consider
cross-lingual recognition of emotions.

1.1 Contribution of this work
The present study focuses on the speech-based recogni-
tion of children with ASC vs typically developing chil-
dren. The classification performances are investigated
across languages, by training on one or several languages
and evaluating on the remaining languages present in our
data. The goal of this research work is, first of all, to learn
about how ASC manifests in different languages, and sec-
ondly, to create a more robust ASC classifier by pooling
data across languages.

The article is structured as follows: first, a detailed de-
scription of the databases are given (Section 2); then we de-
fine the experimental tasks, features and setup (Section 3).
We then comment on the evaluation results (Section 4) be-
fore concluding the paper (Section 5).



2 Databases
In this section, we describe the datasets in four different
languages used throughout our experiments. The datasets
in English, Hebrew, and Swedish have been recorded
within the scope of the ASC-Inclusion project [8], the
French dataset is the CPESD corpus [16].

Compared to state-of-the-art databases used in speech
processing tasks, such as, e. g., automatic speech recogni-
tion (ASR), the presented databases are relatively small. It
must be stated, however, that the recruitment of subjects
from the target group (ASC) is quite challenging, alike the
successful realisation of the experiments and the record-
ings. Compared to other studies within the field of ASC,
those datasets can be considered as fairly representative.
The specific characteristic is that, all datasets contain TD
children and children with ASC under the same recording
conditions, which is exploited in this work measuring the
performance of recognition of ASC across different lan-
guages.

2.1 ASC-Inclusion children’s emotional
speech database

A database for the recognition of emotions and for the thor-
ough analysis of speech features relevant for the task at
hand was created by Marchi et al. [12, 13, 20]. It con-
tains recordings of children with ASC and TD children,
speaking out a set of prototypical emotional utterances in
English, Swedish, and Hebrew.

All children with ASC were diagnosed by trained clin-
icians, based on established criteria (DSM IV/ICD 10) [2].
In order to limit the effort of the children, the experimen-
tal task was designed to focus on the six ‘basic’ emotions
except for disgust: happy, sad, angry, surprised, afraid,
and neutral, plus other three mental states: ashamed, calm,
and proud. During two hour meetings with each child
and her/his parents, a semi-structured observation was con-
ducted, which included free-play in a virtual environment,
followed by a directed play in pre-selected games, and by
an interview with the child. Only then, the recording ses-
sion was held, since it requires a good rapport with the
child. The recordings took place at the childrens’ homes
according to the following setup: the child and the exam-
iner sat at a table in front of a laptop. The examiner read
out a sequence of short stories to the child, who was asked
to imagine that he/she was the main character in the story.
The microphone stood next to the laptop, about 20 cm in
front of the child. The data was then annotated by two ex-
pert clinicians per site. This recording protocol was used
to collect the three following datasets:

English dataset – The English dataset contains record-
ings of 18 children from England (cf. Table 1); all of them
are native English speakers. The ASC group has 8 chil-
dren (3 female, 5 male) at the age of 7 to 11 (mean=8.8,
standard dev.=1.5). The control group (TD) consists of 10
children (5 female, 5 male) at the age of 5 to 10 (mean=7.9,
standard dev.=1.6). For the audio recordings, a Zoom H1
Handy Recorder was used, with a sampling rate of 96 kHz
and a quantisation of 16 bits. Details on the number of ut-
terances per group are given in Table 1.

Hebrew dataset – The Hebrew dataset consists of 7
children under ASC (1 female, 6 male) at the age of 6 to
10 (mean=8.1, standard dev.=1.6), all diagnosed by trained
clinicians. The control group is formed by 10 typically de-
veloping children (5 female, 5 male) at the age of 5 to 9
(mean=7.2, standard dev.=1.8). For the audio recordings,

Table 1: Number of utterances per group for the four lan-
guages. Diagnosis categories: Typically developing chil-
dren (TD) and children with Autism Spectrum Condition
(ASC). Gender: number of female (f) and male (m) sub-
jects.

Language Diagnosis # Subjects # Utterances
f m

English TD 5 5 847
ASC 3 5 658

French TD 6 10 4052
ASC 3 10 1191

Hebrew TD 5 5 350
ASC 1 6 178

Swedish TD 5 6 397
ASC 0 9 331

again a Zoom H1 Handy Recorder was used, with a sam-
pling rate of 96 kHz and a quantisation of 16 bits. Details
on the number of utterances per group are given in Table 1.

Swedish dataset – For the Swedish dataset, a total
number of 20 children took part. All children were native
speakers and the language is Swedish throughout record-
ings. The group under ASC consists of 9 children (all
male) at the age of 7 to 11 (mean=9.1, standard dev.=1.2).
The control group (TD) consists of 11 children (5 female,
6 male) at the age of 5 to 9 (mean=6.8, standard dev.=1.7).
For the audio recordings, a Zoom H4 device with a RØDE
NTG-2 microphone was used, with a sampling rate of
96 kHz and a quantisation of 16 bits. Details on the number
of utterances per group are given in Table 1.

2.2 Child Pathological & Emotional Speech
Database

French dataset – The French dataset we used consists of
recordings taken from 29 children overall; 13 children un-
der ASC (3 female, 10 male) and 16 TD children (6 female,
10 male).

The exploited dataset was extracted from a larger
dataset recorded in France [16]. The Ethical Committee
of the Pitié-Salpétrière Hospital gave approval to conduct
recruitment and speech recording of children. In total, 35
monolingual participants were recruited in two university
departments of child and adolescent psychiatry located in
Paris, France. All children were equipped with commu-
nicative verbal skills. For each child, one of the follow-
ing diseases or impairments had been diagnosed: autism
disorders (AD), pervasive developmental disorders not-
otherwise specified (PDD-NOS), or specific language im-
pairment (SLI), according to DSM IV criteria [2]. The pa-
tients were matched for age, sex, academic grades and lex-
ical abilities. A deeper insight of the socio-demographic
and clinical characteristics of the participating children is
found in [14].

To have a control group, 70 TD children from ele-
mentary schools were recruited. Participants were also
matched for age and sex (2 TD for 1 patient). Their teach-
ers were asked to fill in a questionnaire to exclude children
with learning disorders.

The main goal of this study was to compare children’s
abilities to use prosody to encode emotion and affect in
speech. The first task, the children were asked to com-
plete, was based on the reproduction of an intonation con-



tour [14]. The second task was based on storytelling of the
pictured book ‘Frog where are you?’ by Mayer [21]. In
this story, a little boy tries to find his escaped frog. This
task was originally developed as a standard for the assess-
ment of language production. However, in CPESD, the
children were supposed to produce prosodic cues during
the storytelling [16]. Those cues should encode different
levels of the emotional valence. Valence was categorised
here into three nominal levels by a psychologist: Nega-
tive/Neutral/Positive. In total, the book includes 15 emo-
tionally negative, 6 emotionally neutral and 5 emotionally
positive pictures. Three further pictures which could not be
interpreted unambiguously with respect to emotion, were
excluded from the experiment.

In total, almost 10 hours of audio were recorded:
7 h 38 min for TD children, 1 h 35 min for children
with AD, 1 h 12 min for children with PDD-NOS, and
1 h 56 min for children with SLI.

Recordings were segmented automatically based on
the energy contour of the speech signal, pursuing a di-
vision into groups of breath. Due to perturbation during
the recordings, the obtained speech segments were man-
ually processed in order to obtain a dataset of utterances
with a complete prosodic contour only. This already pro-
vided some interesting findings: utterances produced by
TD children were significantly longer than those of AD,
PDD-NOS, and SLI children (p < 0.5, two-tailed t test)
[16]; the opposite was observed on the task of intonation
contour imitation [14].

For our proposed experiments, we used recordings of
both groups AD and PDD-NOS as instances of the ASC
group, which is well-founded, yet all recordings from pa-
tients with SLI were omitted. All subjects were between
6 and 18 years old at the time of the recording. The aver-
age age was 9.8 years for all groups (TD, AD, PDD-NOS),
with the following standard deviations: TD: 3.3, AD: 3.5,
PDD-NOS: 2.5.

As described above, we only used a subset of this
whole dataset in our experiments. Details on the number
of utterances per group are given in Table 1.

3 Experiments
The goal is now to train and evaluate a language-
independent binary classifier to distinguish children with
ASC from typically developing children.

3.1 Acoustic feature sets
Acoustic low-level descriptors (LLDs) were extracted from
the speech waveform on frame level using our open-source
feature extraction tool openSMILE [22]. Two different
feature sets were applied: a large brute-forced feature set
(ComParE) and a smaller, expert-knowledge based feature
set (eGeMAPS). A detailed description and implementa-
tion of the latter is given in [23].

With the INTERSPEECH 2013 ComParE Challenge
[15], a large acoustic feature set was provided (ComParE).
It is the outcome of a continuous refinement of acoustic de-
scriptors optimised for automatic analysis tasks in paralin-
guistics. It has been successfully employed for the recog-
nition of various speaker traits and states, e. g., personality
[24], pathology [15], cognitive and physical load [25], and
eating condition [26].

The ComParE set consists of functionals of LLDs
of various types, such as energy, spectral, cepstral
(MFCC) and voicing related LLDs, as well as logarithmic

Table 2: eGeMAPS acoustic feature set: 25 low-level de-
scriptors (LLDs).

6(8) frequency related LLD Group
F0 (linear & semi-tone) Prosodic
Jitter (local), Formant 1 (bandwidth) Voice quality
Formants 1, 2, 3 (frequency) Vowel quality
Formant 2, 3 (bandwidth) Voice quality
3 energy/amplitude related LLD Group
Sum of auditory spectrum (loudness) Prosodic
log. HNR, shimmer (local) Voice qual.
9(14) spectral LLD Group
Alpha ratio (50–1000 Hz / 1–5 kHz) Spectral
Hammarberg index Spectral
Spectral slope (0–500 Hz, 0–1 kHz) Spectral
Formants 1, 2, 3 (rel. energy) Voice qual.
Harmonic difference H1–H2, H1–A3 Voice qual.
Spectral flux Spectral
MFCC 1–4 Cepstral

harmonic-to-noise ratio (HNR), spectral harmonicity, and
psychoacoustic spectral sharpness; altogether these are, 65
LLDs and their first order derivatives, i. e., 130 LLDs in
total. Functionals such as, e. g., mean, standard deviation,
higher-order moments, and percentiles are then applied to
the LLDs of each utterance resulting in 6 373 features.

As a comparison to this large scale brute-forced feature
set, a smaller, expert-knowledge based acoustic feature set
has been tried, the so-called Geneva Minimalistic Acoustic
Parameter Set in its extended version (eGeMAPS). It has
been proposed for the analysis of speaker states and traits
in [27] and already proven to be suitable and robust for
modelling of short-term paralinguistic states, such as emo-
tion [28–30]. In principle, a minimalistic feature set has
the advantage of reducing the risk of overfitting a classifier
as compared to larger feature sets.

The selection of features for eGeMAPS was mainly
done in consideration of the potential to describe affective
physiological changes in voice production. It contains sup-
plemental 7 LLDs compared to the 18 LLDs in the origi-
nal minimalistic feature set GeMAPS. A detailed list of all
LLDs is provided in Table 2. Selected functionals are ap-
plied to the LLDs to obtain the final features.

3.2 Setup and evaluation
As classifier, support vector machines (SVMs) with lin-
ear kernel were used, where a fast implementation exists
with LIBLINEAR [31]. All features have been standard-
ised with an on-line approach, i. e., the mean and the stan-
dard deviation of each feature have been derived only from
the training set and then used for standardisation on both
training and test sets.

To optimise the complexity parameter of the SVM, the
data sets of each language, were split into a training and
a validation partition. The partitioning was done manu-
ally, with the goal of disparate speakers in each partition.
Gender and class (ASC / TD) distribution in both parti-
tions were chosen to be as equal as possible. For train-
ing, between 65 % and 70 % were taken from the data sets
of each language, respectively. Complexity was optimised
between 10−10 and 1, with a step factor of 10.

For training, we chose iteratively the datasets of each
language and all their possible combinations. Training of
the final classifier was based on the whole datasets (train-
ing+validation) with the complexity where the largest un-



Table 3: Results in terms of UAR (%) for cross-lingual ASC vs TD classification with eGeMAPS, balanced classes &
languages. Results in parentheses are evaluated on the speaker-independent training / validation split for each language.

Trained on→ E F H S E+F E+H E+S F+H F+S H+S E+F+H E+F+S E+H+S F+H+S
Tested on ↓
English (81.8) 51.3 56.7 46.0 (76.1) (73.5) (72.9) 54.9 43.7 52.1 (72.7) (73.1) (70.0) 60.6
French 49.9 (82.9) 57.5 40.2 (73.1) 51.3 48.7 (71.6) (73.0) 47.9 (66.6) (61.6) 51.6 (64.6)
Hebrew 60.9 50.6 (62.2) 55.5 60.6 (68.2) 61.8 (68.2) 59.7 (60.8) (72.3) 64.9 (63.5) (57.4)
Swedish 51.2 46.0 52.7 (73.2) 46.4 63.5 (59.1) 50.4 (65.0) (57.3) 55.2 (58.6) (55.0) (61.4)

Table 4: Results in terms of UAR (%) for cross-lingual ASC vs TD classification with IS13, balanced classes & languages.
Results in parentheses are evaluated on the speaker-independent training / validation split for each language.

Trained on→ E F H S E+F E+H E+S F+H F+S H+S E+F+H E+F+S E+H+S F+H+S
Tested on ↓
English (86.9) 50.1 54.9 38.9 (84.5) (86.5) (81.6) 45.3 47.9 54.9 (83.7) (77.6) (75.3) 56.9
French 48.6 (87.1) 46.8 47.7 (83.4) 55.4 44.9 (85.4) (81.4) 46.4 (82.0) (76.7) 44.4 (83.0)
Hebrew 54.7 55.2 (71.6) 55.4 62.7 (70.3) 62.7 (58.1) 59.6 (58.6) (72.1) 67.0 (72.1) (59.9)
Swedish 48.5 49.8 53.2 (78.6) 42.5 49.4 (69.5) 56.6 (74.5) (78.6) 51.9 (70.9) (75.0) (75.5)

weighted average recall (UAR) was achieved on the re-
spective validation partition.

4 Results
Complexity was found to be optimum between 10−7 and 1,
where it tends to be lower for the larger feature vectors of
the ComParE feature set.

In Tables 3 and 4, the results of the evaluations are
displayed for each language separately. Each column de-
scribes the datasets which have been used for training (E:
English, F: French, H: Hebrew, S: Swedish). Numbers
in parentheses represent results where the test language is
present in the respective training data. In these cases, the
evaluation was done based on the split into training and
validation partition, where each speaker is only present in
one of the two partitions.

For all shown results, the classes and languages have
been balanced in the training sets by upsampling of the
utterances of the minority class(es), as this practice usually
improves the results.

From the results, it is evident that, in some configura-
tions, not even the chance level (50 %) in binary classifi-
cation is reached. The main difficulty in recognising ASC
from speech in the given setting is that the recording condi-
tions, especially the room and the background noises, were
different between databases, and between recordings of
children with ASC and typically developing children. This
might be a reason for the better results in within-language
recognition of ASC, reported also in previous publications.

For English and Hebrew, a classifier trained on all three
other languages performed best for both feature sets. For
French and Swedish, the most interesting finding is that in
the optimum training set, Hebrew is always present. Inter-
estingly, the Hebrew corpus provides the worst results in
case of evaluation within-language. On average, better re-
sults are achieved with the minimalistic eGeMAPS feature
set than with the ComParE feature set.
This is in contrast to the recognition performance within
each language. Here, the UAR achieved with the ComParE
features is higher in almost every case.

5 Conclusions and outlook
We have assessed the performance of automatic detec-
tion of ASC in children’s speech with two state-of-the-art

acoustic feature sets, one large brute-force feature set and
one smaller set designed by experts in the field of computa-
tional paralinguistics. The evaluations were done based on
training data from four different languages, considering es-
pecially recognition across languages. Results show that,
transferring knowledge from other languages for classifica-
tion of ASC vs TD is highly challenging, because of high
variability in the recording conditions across languages.

As the performance of cross-lingual recognition of
ASC is yet not very good, we will use transfer-learning
[32, 33] to exploit the knowledge from the training data in
a better way to predict in recordings with previously un-
seen languages. Speech denoising techniques, either based
on pure signal processing [34], or machine learning meth-
ods [35], will be used as well as a front end to decrease the
impact of variable background noises in the recordings.
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