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Abstract—Boosted by a wide potential application spectrum,
emotional speech recognition, i. e., the automatic computer-aided
identification of human emotional states based on speech signals,
currently describes a popular field of research. However, a variety
of studies especially concentrating on the recognition of negative
emotions often neglected the specific requirements of real-world
scenarios, for example, robustness, real-time capability, and
realistic speech corpora.

Motivated by these facts, a robust, low-complex classification
system for the detection of negative emotions in speech signals
was implemented on the basis of a spontaneous, strongly emotion-
ally colored speech corpus. Therefore, an innovative approach in
the field of emotion recognition was applied as the core of the
system – the bag-of-words approach that is originally known
from text and image document retrieval applications. Thorough
performance evaluations were carried out and a promising
recognition accuracy of 65.6 % for the 2-class paradigm negative
versus non-negative emotional states attests to the potential of
bags-of-words in speech emotion recognition in the wild.
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cation; bag-of-audio-words; split vector quantization

I. INTRODUCTION

The field of speech emotion recognition deals with the
automatic, computer-aided identification of human emotional
or affective states on the basis of speech signals. Even though
emotions do not necessarily influence the semantic content of
an utterance, they provide feedback information playing an
important role in human communication [1].

Already in the mid-1980s, the arising idea of making
computers to detect emotions from the human voice resulted
in first investigations (e. g., [2], [3]). One decade later, the
improvements in computer technology allowed the implemen-
tation of more complex algorithms. Additionally, the market
requirements for automatic services boosted further research.
In recent years, the use of telecommunication services, mul-
timedia devices and, consequently, the number of possible
new applications rapidly increased. The multitude of studies
describing a variety of new approaches as well as focusing on
the search for powerful combinations of existing approaches
(e. g., [4]), attests the actuality of the area of emotional speech
recognition these days [1].

Similar to the field of automatic speech recognition (cf. [5]),
architectural stages of feature extraction, feature processing,
and classification play an important role in emotional speech
recognition. Moreover, for both fields the need of a suitable
speech corpus with appropriate annotations for training and
testing the system is of immense value. As emotions cannot be
measured by objective means, especially emotion recognition
systems have to deal with ambiguities already in the devel-
opment phase, caused by different annotators’ interpretations
of emotions. Hence, in the first place, emotion recognition
systems can never achieve a better performance than the
annotators did with respect to the underlying training data. In
the second place, the annotators can hardly reflect the exact
emotional state of a speaker [6].

The huge number of continuously arising approaches, mod-
els, algorithms and considerations dealing with an automatic
detection of human emotional states based on speech, testifies
the great popularity and presence of the field of emotional
speech recognition. However, in spite of intensive research
since almost 30 years (cf. [1]) that caused a considerable
technological progress, the lack of large realistic emotional
speech data collections still represents one of the main draw-
backs limiting the performance of today’s emotion recognition
systems.

Apart from the requirement of spontaneity in emotional
speech recordings and their preferable accurate annotations
used as training data for a classifier, also the acoustic en-
vironment of the speaker plays an important role. It ought
to be considered that many emotion recognition systems are
intended for real-world applications and real-world scenarios
are usually characterized by an overlay of multiple voices and
background noise. Aspects concerning emotion recognition in
context of spontaneous field data and speaker independence
were discussed in Schuller et al. [7]. On the one hand,
they showed results for two acted data collections originally
exhibiting studio quality manipulated by step-wisely adding
noise. On the other hand, the spontaneous FAU Aibo Emotion
Corpus (cf. [8]) was investigated by comparing recognition
accuracies obtained when using audio from a standard headset



microphone, from a room microphone, and artificially rever-
berated audio.

Beside acoustic real-world factors influencing the input
quality of automatic recognition systems, also system com-
plexity and, consequently, calculation time, may not be dis-
regarded. Especially these days the market demand on high-
capacity, but at the same time energy-efficient, mobile, elec-
tronic everyday tools forces the use of sophisticated algo-
rithms, for example, when thinking of smart-phone appli-
cations. Furthermore, many applications must be capable of
operating in real-time [9].

Over the last years lots of studies have especially focused on
the investigation of negative emotions and their recognition,
as well as on the recognition of stressed speech in everyday
situations, which is justifiable by many application possibilities
these days. For instance, in automated call centers, the detec-
tion of the telephoner’s level of annoyance, anger, or frustra-
tion allows individual adapted answers and, thereby, enhances
his/her satisfaction. A corresponding system that automatically
classifies telephone quality speech into the speaker’s emotional
states neutral, low anger, and high anger, was described in Lee
et al. [10]. They used speech recordings in which emotions
were acted by amateurs and, thereafter, categorized by the
actors themselves.

A wide operational area for all kinds of recognition tools
that handle negative emotions is the detection of conflicts in
spontaneous conversations. In this regard, in Kim et al. [11]
an annotation scheme for the rating of the degree of conflict
as well as an investigation of various prosodic conversational
features based on recordings of broadcast political debates
were presented. In another study, Kim et al. [12] revealed a
method not for automatically recognising the level of conflict,
but for detecting conflict escalations, i. e., if the level of
conflict increases or not.

Solid systems for the detection of negative emotions in
spontaneous real-word scenarios could contribute considerable
advancements in the field of security applications. An acous-
tic monitoring of public places with a higher incidence of
violence, such as subway or train stations as well as fan zones
inside and around stadiums, in addition to a video surveillance
system could facilitate a more efficient alerting of police and/or
emergency forces. Also when thinking of bank robberies, an
automatic alarming system triggered by acoustically detected
emotions in the clients’ and the employees’ voices could
have potential. Certainly, the main requirements for real-world
emotion recognizers in applications like these are represented
by a real-time processing and an insensitivity against stationary
background noise and time-variant everyday sound events.

On the basis of existing approaches (e. g., [4]), the ideas
for requested and innovative fields of application, and the non-
neglectable conditions for a use in everyday life, the aim of this
project was to develop a robust, but low-complex/calculation-
efficient classification system for the detection of negative
emotions in speech signals. On this purpose, the bag-of-words
(BoW; pl. BoWs) method was implemented as the core of the
system. BoWs represent a valuable instrument in information

retrieval [13]. Beside their appliance for preparing feature
data for classifying text documents or image documents (bag-
of-visual-words approach) [14], the method was adapted to
process audio features for the proposed system. BoWs in
audio-related investigations were applied, for example, for
multimedia event classification [14], video copy detection
[15], content-based retrieval of digital music [16], detection
of violence in movies [17], or the diagnosis and monitoring
of depression [18]. To the best of our knowledge, BoWs have
been rarely used in context of emotional speech recognition
so far. This study provides a first comprehensive evaluation of
the BoW approach as the essential component of an emotion
recognizer on basis of a spontaneous, strongly emotionally
colored, freely accessible speech corpus.

The remainder of this paper is organized as follows: Sec-
tion II – describing the built recognizer in detail – is divided
into three subsections that focus on the extraction of acoustic
features, feature/BoW processing, and classification. In Sec-
tion III the used speech corpus is introduced and recognition
results are presented. The recognizer’s performance in context
of existing investigations in the field of emotional speech
recognition is discussed in Section IV. Section V concludes
the study and provides an outlook on possible improvements
of the introduced system and, on implications for potential
future work in emotional speech recognition applications in
real-world scenarios.

II. METHOD

The data processing architecture of the proposed system
comprises three stages. In the first stage, a speech signal is
analyzed frame-by-frame by extracting acoustic features. In
the second stage, the features are quantized and transformed
into the BoW representation – in context of audio process-
ing henceforth referred to as bag-of-audio-words (BoAW; pl.
BoAWs) representation. Finally, BoAWs constitute the input
data for the system’s third stage, the classification stage.

A. Feature Extraction

To ensure reproducibility, feature extraction was carried out
by means of the open-source toolkit openSMILE [19]. We
further decided to extract the features of the official baseline
feature set of the INTERSPEECH 2009 Emotion Challenge
(cf. [20]) on a frame basis of 0.2 s. As presented in Table I,
in particular, 12 functionals were calculated for the trajectories
of 16 low-level descriptors (LLDs) and their delta coefficients,
leading to a feature vector of length 384 for each frame.

B. Feature/Bag-of-Audio-Words Processing

In general, feature processing serves the purpose of trans-
forming raw feature vectors into a certain kind of represen-
tation that provides benefits for the crucial classification step
and/or for a potential data transmission (cf. [21]).

As the later generation of BoAWs required each feature
vector’s representation as a single, discrete symbol, the first
feature processing step passed through consecutively by each
extracted feature vector was its compression by applying



TABLE I
LOW-LEVEL DESCRIPTORS AND FUNCTIONALS OF THE USED FEATURE SET

(CF. [20]). LLD = LOW-LEVEL DESCRIPTOR, ZCR = ZERO-CROSSING
RATE, RMS = ROOT MEAN SQUARE, F0 = FUNDAMENTAL FREQUENCY,

HNR = HARMONICS-TO-NOISE RATIO, MFCC = MEL-FREQUENCY
CEPSTRAL COEFFICIENT.

LLDs Functionals

ZCR, ∆ZCR mean, standard deviation
RMS energy, ∆RMS energy kurtosis, skewness, linear

F0, ∆F0 regression (offset, slope,
HNR, ∆HNR MSE), extremes (values,

MFCCs 1–12, ∆MFCCs 1–12 relative position, range)

Fig. 1. Split vector quantization (SVQ) procedure applied to an input
feature vector F . CB = codebook, VQR = vector quantizer.

vector quantization (VQ, cf. [22]). For the created system an
hierarchical subspace quantization scheme was implemented
due to better recognition results compared to those when
testing conventional VQ. The applied method, known as split
vector quantization (SVQ), is based on the use of independent
codebooks for multiple feature subspaces [21]. Fig. 1 illus-
trates the SVQ procedure applied to an input feature vector F
handed over from the system’s feature extraction stage.

In a first step, the input vector consisting of 384 feature
values is divided into an adjustable1 number of n sub-vectors
of length k (k = 384/n). Next, VQ is applied to each sub-
vector by using individual codebooks of same length. This
step results in a vector WS which contains the symbols/words
output from the particular sub-vector quantization stages. So
far, the number of features was reduced from 384 to n and their
values’ variability was limited to a discrete value from 0 to the
sub-vector codebooks’ length. Finally, the word vector WS is
mapped to an ultimate feature word wF by again conducting
VQ using another individual codebook of independent length.
Hence, the SVQ algorithm attains the input feature vector’s
representation as one discrete word. The required number of
bits for storing such a front-end word is determined by the
codebook length of the last quantization step.

1The length of the original input feature vector (384) must be divisible by
n without remainder.

Fig. 2. Concept of generating a bag-of-audio-words (BoAW) from an input
sequence of discrete 2-bit symbols/audio words.

The split vector quantizer’s (SVQR’s) codebooks were
generated by applying the k-means clustering algorithm (cf.
[23]) to the training partition of the speech database that was
selected for the system’s development, training and evaluation.
This database will be introduced in Section III.

Subsequent to the transformation of each 384-dimensional
feature vector into one discrete (audio) word using the SVQ
algorithm, the second feature processing step, i. e., the genera-
tion of BoAWs was carried out. Fig. 2 demonstrates the basic
concept of transforming a sequence of discrete 2-bit audio
words into the BoAW representation.

In a first step, the audio word sequence is usually buffered
into overlapping frames of an adjustable length, i. e., the
BoAW buffer length. Subsequently, each frame is mapped to
a vector of fixed length specified by the number of codewords
used for the preceding VQ procedure and constituting both
the VQR’s and the BoAW processor’s vocabulary [16]. Each
output vector representing one BoAW simply encodes the
frequency of occurrence of each of the vocabulary’s audio
words in a predefined, usually ascending order within one
frame [16].

To attain a more convenient value range within each bag
that led to better classification results in preliminary evaluation
tests during the implementation phase, the decadic logarithm
was applied to each bin value after adding the value 1 for
avoiding the log of zero.

Generally, the projection of a word sequence to BoWs
involves a loss of timing information by assuming that the
order of words within each bag is irrelevant [13]. In other
words, the generation of BoWs is based on counting the
occurrences of words from a vocabulary within sets of words
not taking into account the words’ exact positions within the
sets [5].

C. Classification

By reasons of its computational simplicity we used the naive
Bayes approach for classification. Furthermore, we could not
achieve better recognition results by more advanced techniques
such as support vector machines or neural networks.The naive
Bayes classifier is known for providing a good performance
for lots of real-world data sets [23].



III. EVALUATION

A. Material

After a thorough investigation of different existing speech
corpora, the choice of an appropriate speech data collection for
training and testing the implemented system fell on the Vera
am Mittag (VAM) German Audio-Visual Emotional Speech
Database (VAM corpus/database) that was collected at the
Communications Engineering Lab of the Karlsruhe Institute
of Technology (cf. [24]) in 2008. The VAM corpus comprises
12 hours of audio-visual material extracted from recordings
of the German television talk show Vera am Mittag (Vera
at noon). It contains spontaneous utterances from discussions
between the talk show guests. Due to the particular topics
mainly concerning personal and very emotional issues, for
example, fatherhood questions or affairs, a variety of affective
states is provided. The fact that the talk show guests were
not aware of the recordings’ later use for purposes of emotion
analysis constitutes an essential advantage with regard to the
requirement of authenticity in emotional speech corpora. Fur-
thermore, it was assured that the discussions were unscripted
and the guests did not perform as paid lay actors [24].

The VAM database is divided into the three sub-databases
VAM-Video, VAM-Audio and VAM-Faces. For training and
testing the built emotion recognizer exclusively the VAM-
Audio database was applied. VAM-Audio consists of 947
utterances by 47 speakers with an average duration of 3 s.
The average number of utterances per speaker is 21.7 [24].

Advantageously, the VAM database additionally provides
emotion annotations. One part of the database comprising the
utterances of 19 speakers was evaluated by 17 annotators.
The other part comprising the utterances of 28 speakers was
evaluated by 6 annotators. For evaluation the method of
self assessment manikins according to Lang [25] was used.
Thereby, the emotional content of each utterance was three-
dimensionally interpreted in terms of the emotion primitives
valence, activation and dominance [24].

Consistent with the original intent of the recognition system
to detect negative emotions, that is to distinguish between
negative and non-negative emotions, the corpus’ utterances
were assigned to either a defined negative emotion class 1
or a defined non-negative emotion class 0 depending on the
annotators’ ratings for the entity valence.

As valence for most of the utterances was rated as slightly
negative the decision boundary between class 0 and class 1
was placed at -0.2 instead of 0. Thereby, a roughly balanced
number of utterances for each class could be achieved. Fig. 3
illustrates the applied division of emotion classes within the
three-dimensional emotion space spanned by the primitives
valence, activation and dominance within the normalized inter-
val of [-1,1] . The gray volume indicates the defined negative
emotion space, the unfilled volume the non-negative emotion
space.

Furthermore, the division into a training and a test partition
was carried out. To assure speaker independence, for each class
the test partition was composed from utterances of the last

Fig. 3. Division of the three-dimensional emotion space spanned by the
normalized emotion primitives valence (v), activation (a) and dominance (d)

into two classes. The non-negative class 0 is represented by the unfilled
block, the negative class 1 by the gray block.

TABLE II
TOTAL AND SPECIFIC NUMBER OF INSTANCES FOR THE CLASSES 0 AND 1
APPLIED FOR EVALUATING THE SYSTEM’S RECOGNITION PERFORMANCE.

# 0 1 Σ

train 318 420 738
test 133 76 209

Σ 451 496 947

third of the corpus’ speakers. The BoAW buffer length was
individually set to the lengths of each utterance. Consequently,
one BoAW was calculated for each utterance representing
one training or test instance. Table II shows the instance
distribution of both classes 0 and 1 and the training and the test
partitions as well as the respective overall number of instances
used for the system’s performance evaluation.

Admittedly, beside many essential advantages of the VAM
database, such as its free availability for research purposes,
a considerable number of segmented, emotionally colored,
spontaneous, unscripted utterances extracted from real dis-
cussions, as well as their annotations by several listeners
following internationally approved labeling methods, the lack
of everyday background noise, the fact that more than one
speaker never talks at once, and the speech materials restriction
to German language, slightly reduces the data collections value
for the training of robust, global, real-world applications.

B. Results

Table III reveals the system’s recognition results for varying
basic settings influencing the SVQ process, i. e., for a varying
number of feature sub-vectors and varying sizes of both the
sub-vector codebook and the SVQR’s ultimate codebook.

The accuracy values in Table III are rounded to one decimal
point. Considering both the unweighted accuracy (UA) and
the class weighted accuracy (WA), the best recognition results
could be achieved by dividing the original feature vector



TABLE III
RECOGNITION RESULTS FOR VARYING BASIC SETTINGS. SV =

SUB-VECTOR, SVCS = SUB-VECTOR CODEBOOK SIZE, CS = CODEBOOK
SIZE, UA = UNWEIGHTED ACCURACY, WA = WEIGHTED ACCURACY.

(BASELINE: UA = 54.3% AND WA = 61.2% FOR UNPROCESSED
FEATURE VECTORS.)

Configuration Recognition
# SV SVCS [bit] CS [bit] UA [%] WA [%]

2 2 4 61.6 65.1
2 4 2 60.3 62.7
3 2 5 64.2 65.6
3 2 6 63.7 65.6
3 4 2 64.6 64.6
3 4 3 63.8 63.2
4 4 3 62.1 61.7
6 3 3 63.2 63.2
8 4 3 65.3 62.7

12 3 4 63.4 64.1

TABLE IV
RECOGNITION RESULTS FOR A VARYING CODEBOOK SIZE WHEN

REPLACING THE SYSTEM’S SPLIT VECTOR QUANTIZER BY A SINGLE
VECTOR QUANTIZER. CS = CODEBOOK SIZE, UA = UNWEIGHTED

ACCURACY, WA = WEIGHTED ACCURACY.

Configuration Recognition
CS [bit] UA [%] WA [%]

2 59.3 60.8
3 59.2 61.7
4 61.6 63.6
5 57.9 60.8
6 54.0 57.9
7 54.1 57.4
8 53.3 57.4
9 52.8 56.0

into 3 sub-vectors and by using a sub-vector codebook size
and a SVQR’s ultimate codebook size of 2 bits and 5 bits,
respectively. This configuration led to an UA of 64.2 % and a
WA of 65.6 %. By comparison, using support vector machines
with linear kernel of complexity C = 1.0 (trained based on
sequential minimal optimization) instead of the naive Bayes
classifier an UA of 65.2 % and a WA of 62.2 % were achieved.

Whereas in other studies, e. g., [21], the SVQ algorithm
served the purpose of compressing each raw feature vector to
a sufficient number of attributes, the proposed system requires
the mapping of each raw feature vector to one discrete symbol
by reason of the subsequent generation of BoAWs. Thus, the
SVQR consisting of two hierarchical VQ stages could also
be replaced by a single, conventional VQ stage. However,
when applying SVQ instead of conventional VQ a better
recognition performance could be achieved. Table IV presents
the respective naive Bayes classification results for the case of
applying conventional VQ for varying codebook sizes.

For just using the unprocessed feature vectors extracted for
each utterance with its individual length as feature extraction

frame length, i. e., raw instances each consisting of 384 feature
values, an UA of 54.3 % and a WA of 61.2 % were achieved
using the naive Bayes classifier. Support vector machines –
again with linear kernel of complexity C = 1.0 – performed
even worse (UA = 48.0% and WA = 46.0%).

IV. DISCUSSION

A comparison of the proposed system to other systems
described in various studies is very difficult due to the huge
number of degrees of freedom when both implementing a
recognition system and evaluating its performance. Depending
on the applied feature set, the feature processing steps, and
the classification technique, as well as the speech corpus and
the method for generating training and test partitions from the
corpus reduces the meaningful comparability between different
systems. Moreover, a system’s intended application should
always be considered. For example, a robust system for provid-
ing recognition results in real-time might be implemented in a
different way from a system with no requirements concerning
calculation complexity.

Beside its actuality, the study by Han et al. [21] was chosen
to serve as a reference for the proposed system, because (i) the
same set of features was extracted by means of openSMILE,
(ii) also SVQ was applied by using the k-means algorithm
for creating the codebooks, and (iii) the system evaluation
was similarly carried out utterance-by-utterance on the basis
of a German, non-acted speech corpus that was divided into
a negative and a non-negative emotion class. However, in
contrast to the proposed system, in Han et al. [21] SVQ was
applied in order to reduce the number of bits for representing
each front-end feature vector. For this purpose, only one
VQ stage was passed through by the particular feature sub-
vectors. As no further feature processing steps are performed
subsequent to the SVQ procedure the classifier’s input vector
in the system by Han et al. [21] corresponds to the vector WS

(see Fig. 1) in the proposed system that constitutes the output
of the SVQR’s first VQ stage. In Han et al. [21] support vector
machines with a linear kernel, a complexity of 0.05 and a
pairwise multi-class discrimination on the basis of sequential
minimal optimization were employed for classification. The
intent of the study by Han et al. [21] was to find a trade-
off between feature compression via SVQ and recognition
accuracy by testing different numbers of feature sub-vectors
and codebook sizes. For evaluation the FAU Aibo Emotion
Corpus (cf. [8]) was used in Han et al. [21]. The instances from
a total of 18216 speech chunks labelled as either emotionally
negative or non-negative were divided into a training and a
test partition in consideration of speaker independence. In Han
et al. [21] an UA of 67.4 % and a WA of 69.1 % could be
achieved [21].

Even though the proposed system differs from the system
in Han et al. [21] with respect to processing steps subse-
quent to the SVQ procedure, it might be inferred that the
BoAW approach shows potential in its appliance for emotion
recognition. Anyway, when comparing the performance of the
proposed system with the system in Han et al. [21] it must



be considered that – beside the systems’ implementations –
also the corpora used for evaluation are different. Different
corpora involve different annotations that restrict the classifi-
cation system’s performance to the performance of the human
annotators. The corpus used in Han et al. [21] comprises about
20 times as many utterances as VAM-Audio.

V. CONCLUSION AND OUTLOOK

In consideration of the initial aims of this study, it can
be concluded that the final system implementation fulfills
the requirements. On the one hand, mainly robust, approved
and non-complex algorithms were applied to allow for a
reliable and calculation-efficient system performance. On the
other hand, an innovative approach in the field of emotional
speech recognition, i. e., the BoAW approach, was embedded
as the core of the system. For preparing the system to a
potential appliance in any kind of real-world scenario, the
classifier was trained on the basis of a non-acted, strongly
emotionally colored speech corpus of sufficient size. The
system’s performance was thoroughly evaluated. The final
implementation turned out to achieve recognition results (i)
that were substantially better than the baseline results achieved
for the system without the feature/BoAW processing stage
and (ii) that can keep up with results reported for similar
systems in comparable classification scenarios. Hence, the
BoAW approach seems to work well in emotion recognition
tasks. However, its real potency in contrast to other methods
might appear under real-world conditions due to its straight-
forward concept. Moreover, the VQ procedure required for the
generation of BoAWs guarantees that new acoustic input data
are always related to the system’s most similar prototype data.
Thereby, the system always provides the best matching results,
regardless of potential acoustic disturbances.

As the presented system serves as a proposed initial setup
for a variety of potential real-world applications, its practi-
cal real-time installation in respective scenarios for test and
evaluation purposes would be of great interest. However, even
though the VAM-Audio corpus fulfills essential requirements
that allow for modeling non-acted, rather spontaneous emo-
tions, for the proposed system’s use in real-world scenarios a
different training corpus might be needed due to the fact that
an acoustic real-world environment is characterized by speech
simultaneously produced by more than one speaker as well as
by stationary and/or transient background noise. The adaption
of the VAM database by combining multiple utterances and/or
by superposing utterances with background noise could be a
first future step.
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