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Automatic Sentiment Analysis in the Wild

$ace & audio
Milestones M1 M2 S?eat‘fres M3 M4
Month 1 3 5 7 9 11 |13 15 17 |19 21 23 |25 27 29 |31 33 35 37 39 42

Data acquisition and SE\_NA DB
annotation design and

WP1 release
Development of robust and

cross-language audio-visual
WP2 features

Development of behavioural feature extraction
WP3 (bodylanguage, FAU, vocalisations, etc.)

Development of continuous-
valued audio-visual

WP4 sentiment models
Development of behavioursimilarity
WP5 measures
WP6 Development of mimicry, rapport, recognition
WP7 Iterative requirements engineering and application development
WPS8 Dissemination and communication activities; ethical review

WP9 Coordination and management




Objectives

<+ Automatic detection of head and hand gestures (D3.1)

» Facial Action Unit detection and intensity estimation (D3.1)

Imperial College v, vcps14r real PLAYGEN
London gielo, CYeSs ~—*



WDP2: Detection of audio and
visual features

WP3:
- head nods and shakes

- hand-touching-the-face gestures
- FAUs

WP4-WP6:

sentiment
affect
intentions

London ASSAI eyes ~—_X




Head Gestures

<+ Automatic detection of head nods and shakes using the state-of-the-

art method for head node/shake detection based on HMMs

yaw Codewords: o
hech . Temporal up no
Chechra pitch smoothin
Face 8 down shake
roll of angle T HMMs
Tracker . = other
V€10C1ty rlght
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Head Gestures

+» Examples of automated detection of nods/shakes from SEWA videos

Pitch : —4.2
Yaw : 3.0
Roll : 13.5

Imperial College
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Hand Gestures

*» The automated extraction of touching-the-
face gestures has been attempted in two
ways: by analysis of dynamic hand
movement and static face touching.

» The-face-touching and dynamic gestures
cannot be seen in many videos, and most of
the events are very short.

“» The state-of-the-art hand trackers yield
quite poor results, having many false
positives and low true positives.

¢ For these reasons, we excluded the hand
gestures from the set of mid-level features
originally envisioned.

LANY )

Hands are not visible in 89.08% (565535) of the frames in 99.50% (396) of the videos.

Adi@

Static hands are found in 0.63% (4029) of the frames.

-iﬁﬁ

Dvnannc gestunng hands are found in 2.39% (15175) of the frames.

Dynamic not gesturmg hands are found in 3.68% (23378) of the frames.

real
eyes



Facial Action Units

“» The goal is to perform Action Unit (AU) intensity estimation and
detection from SEWA videos.

% Target AUs:

BB Vel i=di 4

AU1: (Inner Brown AU2: (Outer Brown AU4: (Brow Low- AU12: (Lip Corner AUI1T: (Chin
Ralser Ralser) erer) Puller) Raiser)
Low-level AU }

feature intensity

extraction aal® |Imperial College

London



Facial Action Units

% Intensity coding: overview

Manual coding of AU
intensity is extremely time-
consuming and labor
intensive!

AU Intensity 0 L2 3 . >

’ tral Trace  Slight Marked Pronounced :
[FACS (Ekman et al. '02)] neutra : 5 : mmm Niilii!!ﬂ

Imperial College
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Facial Action Units

% AU Intensity: Conditional Ordinal Random Fields (CORF)

Xi={xi1"“9xiTl.} R

O-O
Y ={yi1’°“9yiTi} ‘
Conditional likelihood of Linear-chain CRF: 6

T,
eXp(Ej=1 lp(y,-,j_pyijaxi;e))

T it =
2, eXp(zj=l lP(yi,j—layijaxi;e))
o

P(yi |Xi;e) =

W) =1, %)+ (V0 95)

s
K
Z](.yy=k)10gp(yzj=k|zy) Zl()}ij=m/\yi,]’—l=k)umk
=1, m, k=1

al College

min R(0) - ENl log P(y, |x,;0) Inference: y = argmax P(y|x;0)

yeo!" 0O
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IFacial Action Units - Methodology

s AU detection: Variable-state Latent Variable Model (VSL-CRF)

K

kX_31 I(k =y)-s(x,h;87), ifvy =0 (nominal)
s(y,x,h,v; Q) =4 *¢

> I(k =y)-s(x,h;60), ifvy =1 (ordinal)

Marginal conditional probability of VSL-CRFs

max( > exp(s(y,x, h,v,Q)))
P(ylx,2) = "

Z(x)
Z(x) = Z Zi(x) = Z max( Zexp(s(k, x,h,v))) and Q = {67,69}K_,
k kK Y h

Prediction:  y* =arg;naxP(yIX*) (a) H-CRF[22]/H-CORF[11] (b) VSL-CRF[L1]

Imperial College
London
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IFacial Action Units— Software Impl.

/ /> ---.\\\"‘
| Preprocessing

(2) Remove

(1) Alignment .
CUCUERE Sybject mean
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AU detection from SEWA videos

* AU detection pipeline. For each frame of the sequence, the facial points are (1 ) I 0 I C "
aligned to the mean face, (2) the median value of the subject is removed and (3) mperla O ege
the dimensionality of the feature vector is reduced. The resulting sequential data

is then classified using the VSL-CRF model. London
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IFacial Action Units - Experiments
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IFacial Action Units - Experiments

Mod. AUl AU2 AU4 AU12 AU17 | av.
SVM D0.7 60.1 53.5 52.9 56.8 5.8
HCRF|22] o4.1 27.6 43.1 04.4 47.3 51.3
JeaR1] | 57.1 65.7 5l.4 55.9 D2.4 56.5
@ 61.4 64.5 53.1 56.2 56.3 | 58.3

F-1 score for AU detection from SEWA videos

Imperial College
London



IFacial Action Units - Experiments

— —
o 2f o 2 J
- o
< 0 - e < 0
o 2f g 2f ]
-
§ 2f § 2f I
N N
—~ 2} - 2 i
) —/\ =
< 0 e e — < 0\ e ——— —_—— =
g 2- T T T g 2 T T T T
< (o | puee——_ < 0 e ——— = o 1

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Frame Number Frame Number

N T T N
75 4

AU detection from SEWA videos: Qualitative results

*The blue line depicts the (continuous) score by the VSL-CRF model for Imperlal CO"ege
detection of the target AU, depicted in red. The ground truth for AU L
ondon

activations in target sequences is depicted in green.



Objectives

¢ Audiovisual detection of non-verbal vocalisations (D3.2)

Imperial College v, vcps14r real PLAYGEN
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