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Abstract—Accent is a soft biometric trait that can be inferred
from pronunciation and articulation patterns characterizing the
speaking style of an individual. Past research has addressed the
task of classifying accent, as belonging to a native language
speaker or a foreign language speaker, by means of the audio
modality only. However, features extracted from the visual stream
of speech have been successfully used to extend or substitute
audio-only approaches that target speech or language recogni-
tion. Motivated by these findings, we investigate to what extent
temporal visual speech dynamics attributed to accent can be mod-
eled and identified when the audio stream is missing or noisy,
and the speech content is unknown. We present here a fully
automated approach to discriminating native from non-native
English speech, based exclusively on visual cues. A systematic
evaluation of various appearance and shape features for the
target problem is conducted, with the former consistently yield-
ing superior performance. Subject-independent cross-validation
experiments are conducted on mobile phone recordings of con-
tinuous speech and isolated word utterances spoken by 56
subjects from the challenging MOBIO database. High perfor-
mance is achieved on a text-dependent (TD) protocol, with the
best score of 76.5% yielded by fusion of five hidden Markov
models trained on appearance features. Our framework is also
efficient even when tested on examples of speech unseen in the
training phase, although performing less accurately compared to
the TD case.

Index Terms—Foreign accent detection, non-native speech,
visual accent classification, visual speech processing.

I. INTRODUCTION

ACCENT manifests itself in speech through a set of pro-
nunciation, articulation, intonation, lexical stress, and

rhythmic patterns that are common in the speaking style of
individuals belonging to a particular language group. Accent
classification has attracted growing interest in the speech
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processing and human language technology research commu-
nity over the past two decades [1]–[7].

Unveiling a priori whether a speech episode is spoken
by a second-language (L2) speaker or by a mother tongue
(L1) speaker has emerged as a need to overcome limitations
posed by accent-sensitive speech recognizers [8]. Language-
specific speaking style is intrinsically related to physiological
phenomena in the speech production system, such as vocal
tract functions and articulatory movements, that are devel-
oped while acquiring language skills at a young age [9].
There is evidence that these traits are transferred to any sec-
ond language learnt [1], [9], [10]. Specifically, L2 speakers
“borrow” phonemes from their mother tongue to replace unfa-
miliar phonemes that they encounter in the foreign language.
Such misarticulations and varying pronunciations can lead to
substantial divergence from the actual phonetic configuration
of the second language, thus resulting in higher word error
rates in accented speech recognition. Hence, identifying the
accent, and, at a second step, adapting the acoustic, pronun-
ciation, and language models can markedly enhance speech
recognition [1], [2].

The knowledge of the accent of a speaker is not useful
only as a preprocessing step for speech recognition. Primarily,
accent is an important soft biometric trait of an individ-
ual [11], such as age and gender, and, as such, can serve for
verification purposes [6], [12]. Accent analysis is also essen-
tial for applications such as pronunciation modeling [13] and
computer-assisted L2 learning [14].

Most related work has viewed accent identification as
a multiclass classification problem that aims to assign a
speech sample to either the native accent of the target
language or one of separately modeled foreign-language
accents [1], [2], [15]. These approaches mainly use hidden
Markov models (HMMs) [16], on the phoneme or word
level, trained on acoustic features, such as prosodic and cep-
stral features. Alternative methodologies borrow inspiration
from language identification (LID) [3] and usually rely on
language and phonotactics modeling, with Gaussian mixture
models (GMMs) as their basic tool. More recently, discrimi-
nation between native and non-native speech has been targeted
by means of binary classification frameworks [4]–[6]. These
works mainly rely on cepstral, prosodic, speech recognition-
based or N-gram language features, and employ support vector
machines (SVMs) for classification.

All the above works on accent classification and detec-
tion have persistently ignored features derived from the visual
stream. However, the beneficial role of visual information
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to speech comprehension has been well documented [17]
and experimentally validated [18]–[20]. Furthermore, recent
findings indicate that human observers can actually perform
language identification through the visual modality only [21].
Automated approaches for visual-only language identification
have also been proposed (see [22]). Another study shows that
visual identification of accent is a feasible task for human
observers [23]. This indicates that visual manifestations of
accent in speech suffice for a human observer to identify a
speaker as native or non-native, even in the absence of the
audio stream.

In this paper, our aim is to show that these accent-related
speech dynamics, which are visually discernible by humans,
can be efficiently modeled and identified through a fully-
automated visual approach. Herein, we present this paper
on the task of visual-only discrimination between native and
non-native speech in English, which is targeted as a binary
classification problem. Visual-only accent classification can
prove useful for authentication devices to recognize impostors
in the case of noisy crowded environments, where other voice-
based biometric tools provide less reliable measurements. It
can also be utilized to assist L2 learning in applications that
would provide feedback to the learners by assessing their
“level of accent” as they pronounce words or sentences in
front of a camera.

The twofold contribution of this paper consists of: 1) pro-
viding the first basic study about the target problem and
2) introducing a fully-automated approach that could be used
to visually discriminate native from non-native speech. The
presented study includes a systematic comparative evalua-
tion, in terms of their robustness for the problem investigated,
of various appearance- and shape-based visual descriptors,
which are coupled with HMMs [16]. Also, different feature
normalization alternatives are examined, demonstrating the
importance of tailoring the normalization step to each utilized
feature.

Speaker-independent accent classification experiments are
conducted first on continuous reading speech samples from the
MOBIO database [24], all captured by mobile phones. In that
experiment, the experimental scenario is text-dependent (TD),
i.e., all speakers utter the same three-sentence paragraph.
This ensures that our system recognizes distinct accent-related
patterns rather than simply differentiating between mouth
movements corresponding to different speech content. In a
second experiment, the classifiers that have been trained and
optimized on the three-sentence speech scenario are tested
on visual speech examples corresponding to isolated words.
Finally, we also examine the text-independent (TI) experi-
mental scenario, i.e., testing on examples of speech content
different from that “seen” in the training phase, and thus
perform a fair comparison with the TD counterpart. In all
experiments presented herein, multifold cross-validation is
performed, so that all data are used for testing.

Our results indicate that a system based on appearance
descriptors and a sequential classifier can reliably be used
to discriminate native from non-native speech. Shape features
yield above-chance-level performance, but they seem to be
less informative for the target task, when compared to the

appearance-based features. Accent-class predictions are accu-
rate also when our systems are tested on short speech segments
containing isolated words. Finally, we show that our frame-
work can also address accent classification in the TI case,
though with lower performance.

This paper is organized as follows. Section II provides
an outline of previous work on audio-only accent classifica-
tion and detection, along with highlights of research that has
employed visual modality for speech, language, and accent
recognition. Section III presents the proposed methodology,
while Section IV describes the database which we use in our
experiments. Section V explains the appearance and shape
features used in this paper, along with the preprocessing
procedure, i.e., tracking and mouth region of interest (ROI)
extraction, and the normalization schemes applied. Section VI
focuses on the experimental protocol and details regarding the
normalization schemes, as well as the topology and parame-
ters of the classifiers. Sections VII and VIII report and discuss
the results of the TD and TI experiments, respectively. Finally,
Section IX concludes this paper.

II. PREVIOUS WORK

A. Audio-Only Approaches to Accent Classification

There has been considerable research targeting the acoustic
characteristics of foreign accent [1], [9], [25]. Accent classifi-
cation has mostly been addressed as the task of automatically
assigning speech in a target language to either the native accent
or a language-specific foreign accent. An established common
approach in this area is to model each accent separately, based
on phonology and phonotactics acoustic features, and sub-
sequently employ a generative classifier, such as HMMs or
GMMs, to produce accent-specific probabilistic scores. In [1],
energy and Mel-frequency cepstral coefficients [16] are used,
in conjunction with accent-specific phone- and word-level
HMMs, to classify among four accents in American English
(neutral, Chinese, Turkish, and German). Accent classification
rate of 93% is achieved on test strings composed of seven to
eight isolated words. In an additional experiment, 21 human
listeners (12 native and nine non-native English speakers) were
asked to characterize accent as native or non-native and also
classify non-native accent (as one among the three foreign
accent classes) on 48 speech samples, which had been ran-
domly selected from a test set containing utterances of 20
words. The proposed computer algorithm is shown to provide
accent classification accuracy that is higher by 8.4%, com-
pared to the best performance among human listeners, when
tested on the same evaluation set. Also, the results indicate
that listeners who are native speakers of English can clas-
sify accent better than non-native speakers. Teixeira et al. [15]
build an accent classification framework targeting six accents
in English, based on competing HMM-based subnets, and
they show that speech recognition benefits from the use of
multiaccent training data.

To avoid the computational cost entailed by training
phoneme-level HMMs for each accent, many approaches
have resorted to alternative classification schemes.
Deshpande et al. [26] extract formant frequencies only
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on voiced frames and use accent-specific GMMs to distin-
guish between native and Indian accent in American English.
Angkititrakul and Hansen [10] introduce two trajectory-based
models on the cepstral space, and conduct accent classifica-
tion experiments on five English speaker groups. Recently,
Biadsy et al. [27] use phone-type GMM-supervectors and
an ad hoc SVM classifier, achieving high performance on
a series of accent classification experiments on continuous
speech. Zhang and Qin [7] build upon the above framework
to develop a semi-supervised accent detector to distinguish
among Native, Southern, and Hispanic American English.

Other works address accent classification by borrowing
techniques commonly used in the similar field of LID [3], [28].
Torres-Carrasquillo et al. [3] approach dialect identification
by means of GMMs trained on shifted-delta-cepstral features.
In [28], experiments are conducted on 23-way classification
of non-native English accents. Their framework, which is
based on heteroscedastic linear discriminant analysis (HLDA),
maximum mutual information (MMI) training, and Gaussian
tokenization is shown to improve the baseline GMM LID-like
model.

As opposed to this multiclass classification formulation,
accent identification has been recently addressed as a binary
classification problem, usually termed accent detection. In
that scenario, the goal is to determine the nativeness or non-
nativeness of speech. An important limitation to be battled
within this scope is the increased variability that speakers
belonging to different language backgrounds inflict on the non-
native accent class. Shriberg et al. [4] perform accent detection
experiments, using features based on maximum likelihood lin-
ear regression (MLLR) adaptation transforms, phone N-gram,
prosodic, and word N-gram features, while relying on lin-
ear SVMs for classification. Omar and Pelecanos [6] employ
GMM supervectors and feed them into SVM classifiers for
accent detection. The authors report a relative improvement
of 23.4% over previously published results [4] on the English
Fisher database [29]. Tan et al. [5] utilize four subsystems, two
phonetic-based, and the other two nonphonetic-based, built
on HMMs and GMMs, respectively, and fusion of them in
order to address discrimination between native and non-native
American English. Recently, Sam et al. [30] use modulation
spectrum features and GMM classifiers for non-native accent
detection in French.

B. Visual Speech and Accent

All the aforementioned research on accent classification
and detection has relied solely on auditory information, thus
disregarding the visual modality. Yet the contribution of the
visual information to speech comprehension has been well
investigated [17]–[19]. Experimental findings show that visual
speech features significantly boost the performance of auto-
matic speech recognizers, compared to audio-only approaches,
especially when the auditory stream is noisy [18], [31].

Experiments with human observers of visual speech have
shown that language identification is feasible through the
visual modality only. Specifically, Ronquest et al. [21] carry
out experiments in which participants are asked to observe,
without listening, video clips that show a male or a female

speaker talking in English or Spanish. Both speakers appear-
ing in the videos are bilingual in English and Spanish. The
task for the observers is to identify from the visual speech
frames that contain the whole face of the speaker which lan-
guage is spoken in each video clip. The authors show through
a series of experimental scenarios that observers perform much
higher than chance level on visual discrimination between
English and Spanish, even when the visual speech segments
are presented to them in reverse temporal order. Recently,
Newman and Cox [22] present an automated approach for
both speaker-dependent and speaker-independent visual-only
language identification, based on features that capture phonol-
ogy and phonotactics characteristics of visual speech. They
use active shape models and active appearance models [32]
for visual feature extraction, which is carried out frame-wise,
and then feature vectors are “tokenized” in visually transcribed
phonemes. Bi-gram language models, one for English data
and the other for Arabic, are then constructed and SVMs are
used for classification. Their results show that visual features
can alone be discriminative for the target problem. This paper
also suggests that the attained accuracy highly depends on the
visually described phoneme recognizers. The data used in this
paper have not yet been made publicly available, which made
our efforts to reconfirm the findings of this paper impossible.
This further motivated our choice to use publicly available
data in this paper and make our results repeatable by other
researchers in the field.

Recent evidence suggests that speaker variability in terms
of accent, even in the form of regional accent, can largely
affect speechreading performance. Ellis et al. [33] perform
speechreading experiments in British English on deaf people,
which reveal that visible regional accent is the most important
cause resulting in degraded performance. Irwin et al. [34] con-
duct a systematic analysis of British regional accent. In one
of their experiments, they ask participants, half of them with
Nottingham accent and the other half with Glaswegian accent,
to speechread sentences uttered by speakers from both accent
groups. Both groups of listeners found it more difficult to visu-
ally comprehend speakers with Glaswegian accent. In another
experiment, they report that in scenarios where both speaker
and observer belonged to the same accent class, speechreading
performance was higher.

All the above findings support the assumption that there are
highly informative visual cues related to manifestations of dif-
ferent articulation and pronunciation patterns, that could alone
serve for accent identification. Furthermore, visual information
from the speaker’s mouth region can disclose physiological
phenomena, such as range and velocity of lip movements and
place of articulation, that are intrinsically related to lexical
stress and other accent traits [23].

To the best of our knowledge, there has been no previ-
ous extensive study of the task of automatic discrimination
between native and non-native speech, based on the visual
modality only. The study in [23] reports human observer
experiments on visual discrimination of accents, in partic-
ular, English versus French. Specifically, 30 participants,
all being native English speakers, were asked to iden-
tify the accent used by a bilingual English male speaker
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Fig. 1. Illustration of the discrete stages of the proposed framework for visual-only discrimination between native and non-native speech. The upper branch
and the lower branch refer to the systems based on appearance- and shape-based features, respectively. The dashed–dotted line denotes units that involve more
than one alternatives, i.e., original or difference ROIs.

(native speaker of English and French) in episodes of visual
speech. Four experimental scenarios included English speech
with an English accent, English speech with a French accent,
and viceversa. Note that in none of the four conditions, the
participants were aware of the language spoken. Observers
were able to identify the accent of the speaker at much higher
performance levels than chance level. Better performance was
achieved in cases where language and accent were matching,
while the authors report a significant accuracy decline in cases
where incongruent stimuli were presented.

III. OVERVIEW OF PROPOSED METHOD

The proposed system for visual-only discrimination between
native and non-native speech, graphically illustrated in Fig. 1,
consists of the following steps.

1) Facial point tracking, image registration, and ROI
extraction.

2) Appearance and shape features computation.
3) Classification.
First, facial characteristic landmarks on the speaker’s face

are tracked throughout each video of an utterance, using the
appearance-based tracker [35]. Only the points correspond-
ing to the lower face region are used in further processing.
Apart from the coordinates of the actually tracked points,
the tracker estimates their position on a pose-free coordi-
nate system. These pose-free points, after undergoing a global
alignment, serve to register the appearance of the lower face
image (i.e., remove variations due to head movements). This
texture warping process yields frontal face images, from which
the pixel intensities lying in a rectangular region around the
lips are used as mouth ROI.

In the next stage, we use the mouth ROIs and 16 registered
mouth points localized in each frame to extract appearance
and shape features, respectively. We investigate five different
appearance-based descriptors: 1) principal component analy-
sis (PCA) [36]; 2) 2-D discrete cosine transform (DCT) [36];
3) discrete wavelet transform (DWT) [36]; 4) local binary
patterns (LBPs) [37]; and 5) histograms of oriented gradi-
ents (HOGs) [38], all calculated on pixel intensities. We
choose to investigate these appearance descriptors because

they have proven to be highly descriptive and informative of
facial expression changes by numerous studies on automatic
facial expression recognition (see [39]–[41]). Shape features
are also examined, based on a set of 16 registered points on the
inner and outer lip contour (see Fig. 1), which are yielded by
the previous image registration phase. PCA applied on points
is used to capture the top high-variance modes and thus project
points onto principal mouth configurations.

For classification, we use HMMs [16]. HMMs have been
shown highly suitable for temporal modeling of speech [42]
and classification of facial events and patterns including visual
speech recognition, facial muscle action recognition, emotion
recognition, and social signal recognition (see [31], [43]–[46]).
In particular, we forward the static features to the classifier,
which undertakes the task of modeling the accent-specific
visual speech dynamics. Two continuous-density models, one
for each accent class, are utilized to capture the evolution of
visual speech along the entire utterance, rather than on a sub-
word or word level. This entails no reliance whatsoever of
our framework on speech transcriptions. Finally, each test fea-
ture vector is assigned to the class-model yielding the highest
likelihood (see Section VI-C).

IV. DATA SET

The growing interest of the speech processing commu-
nity in the effect of accented speech on the performance
of speech and speaker recognition systems has led to the
development of various data sets that contain also speech
from non-native speakers. Raab et al. [47] list and succinctly
review non-native speech databases. They report that the anx-
iety can be heard in speech recordings of participants who are
asked to speak in a language other than their mother tongue.
Furthermore, they note that the variability induced in the non-
native class by different levels of L2 proficiency should be also
considered.

In this paper, we are aware of these factors. However, the
absence of previous work on the target task leaves us with no
precedent published results on existing databases. This ren-
ders impossible any comparison with respect to a reference
protocol. On the other hand, this gives us the opportunity to
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Fig. 2. Example frames, one for each of the six sessions of phase I, for two individuals from the MOBIO database (top row: subject m431 and bottom row:
subject f010). Note the high intraspeaker variability across sessions in terms of appearance, clothing, head pose, illumination, and background.

test our system on a recently published challenging data set
that satisfies our experimental setting choices. The proposed
framework is evaluated in a subject-independent fashion on
native and non-native speech episodes of English speech from
the MOBIO database [24].

The MOBIO database was recorded over one and a half
years at six sites in five countries, including only English
speech produced by both native and non-native speakers. The
recordings are temporally distributed into two phases, each
comprises six sessions. The full database contains 61 h of
audio-visual data corresponding to a total of 150 participants.
Each session of phase I includes four different scenarios,
that is, five short response questions, one predefined text, ten
free speech questions, and five short free speech questions.
Phase II does not include the fourth scenario, while partic-
ipants are prompted with five free speech questions, instead
of ten. Audiovisual data are almost exclusively captured by
mobile devices. Only the very first out of the 12 sessions is
captured also by laptop computers in a separate recording.
Considering that the acquisition device is handheld, high vari-
ability in pose, and illumination characterizes the data samples,
even within the same recording. As a matter of fact, the visual
stream includes frames with high variability in head pose,
and non-uniform illumination in the region of the face (partial
occlusions due to varying shadowing). An additional challenge
is posed by appearance fluctuations of the same subject across
different sessions (e.g., haircut, glasses, and beard). Finally,
visual noise caused by different background and recording
conditions varies significantly. Characteristic frames from two
individuals can be seen in Fig. 2.

In this paper, we choose to establish a TD scenario for
our baseline experiments. Hence, we use only those visual
speech samples from the six sessions of phase I in which the
same three-sentence text is read. All of the data used in this
paper were captured by mobile phones, as we do not include
in this paper the laptop recordings. By using different sen-
tences of the same paragraph for our training, validation, and
test set, we also evaluate our framework on the TI scenario
(see Section VIII). As no information regarding the national-
ity and mother tongue of the speakers is publicly available,
the nativeness/non-nativeness of speakers was examined by
four Ph.D. students of our group, all being native English
speakers. After watching for each of the 150 speakers two
audiovisual samples containing the entire utterances of the
three-sentence text, they identified in unison 28 speakers from
MOBIO database as being non-native. No other information

was used for the accent annotation. With the goal of form-
ing a balanced set with respect to accent class, we randomly
selected 28 speakers out of those annotated as native. The
only bias involved in this selection was posed by our choice
to keep our data balanced over gender as well. Out of 336
samples, corresponding to the six phase I sessions for the 56
subjects used, 64 samples for which ROIs were erroneously
extracted, e.g., due to erratic point tracking or inaccurate warp-
ing (see Section V-A1), were excluded from the experiments.
Therefore, totally 272 samples from 56 subjects—135 sam-
ples belonging to 28 native English speakers and 137 to 28
non-native English speakers—are used in the experiments pre-
sented in this paper. The paragraph read in all such recordings
is the following.

“I have signed the MOBIO consent form and I understand
that my biometric data are being captured for a database
that might be made publicly available for research purposes.
I understand that I am solely responsible for the content of
my states and my behavior. I will ensure that when answer-
ing a question I do not provide any personal information in
response to any question.”

Long silence segments in the beginning and the end of
the samples are removed by applying the statistical model-
based voice activity detector in [48] on the corresponding
audio stream, setting the threshold for the likelihood ratio test
to 95%. The mean and standard deviation of duration over all
272 samples used is 22.5 and 3.4 s, respectively. The video
stream, which is provided in variable frame rate encoding,
is converted to a sequence of still frames, corresponding to
approximately 15 frames/s, for almost all samples. The frame
size for all the samples is 640 × 480 pixels.

V. FEATURE EXTRACTION

This section describes the appearance and shape features
extracted on the visual speech samples from MOBIO database.
Aside from the description of each feature and the choice of
parameters, the rationale behind using each of them is given.

A. Appearance Features

Various appearance descriptors are examined in this paper,
to assess their ability to capture discriminative visual accent-
sensitive patterns. Feature extraction is based on either a global
transformation or local operations, calculated directly upon
pixel intensities.
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Fig. 3. Instances of the ROI extraction procedure, illustrated on a native speech example frame from the MOBIO database (subject f118). (a) Original
frame. (b) Candide wireframe fitted on all 113 facial points produced by the tracker. (c) 34 lower face points. (d) Triangulated mesh of the lower face points,
superimposed on the input face image. (e) Pose-normalized lower face points (as yielded by the tracker), including the six base points used for alignment
(shown in blue). (f) Triangulated mesh of the registered points. (g) Warped frontal lower face and mouth bounding box. (h) Final mouth ROI, which is obtained
after rescaling the initial ROI to 64 × 64 pixels and, subsequently, smoothing it by a spatial Gaussian filter of dimension 3 × 3 pixels.

First, appearance in the lower face has to be registered,
i.e., variations owing to head movements have to be removed
and face images have to be globally aligned. The mouth ROI
extraction procedure is described in detail below.

1) Mouth Region of Interest Extraction: We initially track
113 characteristic points on the face [Fig. 3(b)], using
the appearance-based tracker [35]. A Candide wireframe
[Fig. 3(b)] is manually fitted on the face at the first frame, thus
initializing the position of the points. These are then automat-
ically tracked for the remaining frames. Out of these points,
that are estimated for the N frames of a video sample, we only
keep the 2-D spatial coordinates of 34 points that correspond to
the lower face region [Fig. 3(c)]. The collection of these coor-
dinates for all N frames form the set of actually tracked points
T = {T1, T2, . . . , TN} of dimension N × 34 × 2. Aside from
this set, we use the set T norm = {Tnorm

1 , Tnorm
2 , . . . , Tnorm

N },
containing the coordinates of the pose-free version of the 34
points for all frames [Fig. 3(e)], again provided as a part of the
tracker’s output. Six base points [see blue points in Fig. 3(e)]
that are relatively invariant to facial deformations—the two
“ear-level” points on the face boundary, the two points where
the jaws are attached to one another, the tip of the nose, and
the center of the mouth (calculated based on the location of
16 points representing the lips contour)—serve to register the
face region, that is, align the set T norm of pose-free points.
The registration is performed by means of a similarity trans-
formation (translation, scaling, and rotation), defined by the
values of these six base points in a reference frame. The ref-
erence frame contains a rescaled version of the mean shape
computed over all pose-free shapes. The rescaling is such that
the interocular distance matches the mean interocular distance
computed over all tracked shapes. The similarity transforma-
tion is applied to all 34 pose-free points to yield the registered
points set T reg = {T reg

1 , T reg
2 , . . . , T reg

N }, which is employed in
the next stage.

Texture warping is then performed to acquire lower face
images in frontal view. First, for each frame, two 2-D meshes

(one for actually tracked points T [Fig. 3(d)] and one for the
registered points T reg [Fig. 3(f)]) are triangulated. A piecewise
affine warp is defined between the corresponding triangles in
the meshes. This warp is then used to map the texture of the
mesh in the input image [Fig. 3(d)] onto the registered mesh
[Fig. 3(f)]. Finally, all warped frontal lower faces are resam-
pled to dimension 200 × 200 pixels [Fig. 3(g)], and the regis-
tered points are accordingly rescaled. These are subsequently
employed to calculate shape features (see Section V-B).

The mouth ROI is extracted from the warped frontal image
as a 94 × 114 pixels bounding box containing the pixel inten-
sities around the mouth [Fig. 3(g)]. This dimension was set on
the basis of the 99.99%-percentile of the maximum horizon-
tal and vertical distances of the outer lip contours appearing
in half of the speech examples (the maximum dimension was
104 × 118 pixels, and is not used because it corresponds to
inaccurate tracking of the outer lip points on a small por-
tion of frames). Finally, all mouth ROIs are downsampled to
64 × 64 pixels and, subsequently, smoothed by a 3 × 3 pixels
gaussian filter [Fig. 3(h)].

In order to incorporate dynamic information related to subtle
short-term articulation cues, prior to feature extraction, we also
examine the technique of ROI frame differencing, similarly
to [49]. In particular, the mouth ROI In at each frame n is
replaced by the difference in pixel intensities between In and
the ROI at the previous frame, In−1

Idiff
n = In − In−1. (1)

These new mouth ROIs for all N frames of the utterance
form the set of difference ROIs Idiff = {Idiff

1 , Idiff
2 , . . . , Idiff

N }.
In this way, the dynamics of the recorded visual articula-
tions are captured (i.e., changes in the skin appearance around
the mouth) and redundant speaker-specific information that is
static in all frames is removed. We evaluate our approach both
on the original mouth ROIs and on the difference ROIs.

2) Descriptors: Five appearance descriptors are calculated
based on the pixel intensities of each mouth ROI for all
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speech samples processed. These appearance features include
PCA, DCT, DWT, LBP, and HOG. The image-transform-based
descriptors, i.e., PCA, DCT, and DWT [36], are the most
commonly used feature representations for visual speech pro-
cessing tasks [50], [51]. LBP has been widely used as a
robust image compression technique for texture representa-
tion [37], and it is one of the most commonly used facial
appearance descriptors in face recognition and facial expres-
sion recognition [39], [40]. HOG was first applied for human
detection in images [38], but has proved successful in a wide
range of computer vision problems, like recently in lip activity
analysis [52].

Let us first explain each feature descriptor and the corre-
sponding parameter choices in more detail.

PCA performs an eigen-decomposition of global intensity
variation over the training set mouth ROIs. The aim herein is to
capture the prevalent modes of texture variance in the mouth
images, such as the ones that “control” the opening/closing
of mouth, the stretching/shrinking of the lip corners, or the
degree of visibility of teeth and tongue. Our feature vector
corresponds to the principal components, i.e., eigenvectors of
the covariance matrix, accounting for the 95% of the total vari-
ance. Mouth ROIs are first downsampled to dimension 32×32
to reduce dimensionality, which in the current experiments
varies from 19 to 62 (see Section VI-B).

DCT projects intensity values onto real cosine basis func-
tions. We use it with the goal of unveiling the richest global
frequency information, in terms of energy of the visual signal
of the mouth ROIs. In this way, we can capture fluctuations
in the intensity values corresponding to movements of the
mouth and the muscles around it, thus discarding homoge-
neous skin or lip regions. Similarly to [51], we apply 2-D DCT
to eight non-overlapping 32×16 blocks of the ROI. Then, the
2-D DCT coefficients that lie in the upper-left corner of each
block correspond to the lowest frequencies (equivalently, high-
est energies). After rearranging these coefficients in a zig-zag
manner, we retain the first four for each block and so construct
a 32-D vector.

DWT is used to perform frequency decomposition of the
mouth images at various resolutions. The main difference to
DCT lies in the basis functions which are shifted and scaled
versions of some mother wavelets. Specifically, at each level
DWT involves consecutive filtering in the horizontal and verti-
cal direction of the image with a high-pass and low-pass filter,
thus producing four subband images (LL, LH, HL, and HH).
The image LL is used for the computation of the next level.
After rescaling the ROIs to dimension 16 × 16, we use the
Daubechies-4 wavelet filter, with three levels of decomposi-
tion, to compute the 2-D DWT coefficients. As in [51], the
approximation coefficients (those related to the LL subband)
of the third level, along with all the detailed coefficients (those
related to LH, HL, and HH subbands) of the second and third
level, are concatenated in a single 64-D vector.

LBP rely on intensity differences between each pixel of
the image and a set of P equally spaced pixels on a circle
of radius R around it. It is intuitive to expect that LBP will
be capable of capturing finer manifestations of articulation in
the mouth ROIs, since it encodes local texture information.

Out of the 2P possible binary patterns, it has been shown
that u2-uniform patterns, i.e., those in which at most two
0/1 or 1/0 bitwise transitions occur, reveal the most prominent
texture structures [37]. In this paper, we use the LBPu2

(P=8,R=1)

operator, which acts in a neighbourhood of eight pixels on a
circle of one-pixel radius. The final descriptor is a normalized
histogram encoding the frequency of occurrence of each of
the 59 u2-uniform patterns for the entire ROI [37].

HOG is an scale-invariant feature transform-like descrip-
tor that performs local-gradient orientation histogramming. As
such, it is expected to model local orientation information
associated with meaningful edges, caused by visible effects of
speech production and articulation. Each mouth ROI is divided
into a fixed number of cells. The gradient at each pixel is
discretized into one of four orientation bins, and each pixel
contributes to the local histogram of the cell with a “vote”
proportional to the gradient magnitude. The histogram of each
cell is normalized four times, with respect to the total energy
of the four 2 × 2 blocks of cells that contain that particular
cell. Setting the cell size to 32 × 32 results in a feature vector
of length 64 for the whole mouth ROI.

3) Normalization: Feature mean normalization (FMN) is
commonly applied in lipreading, with the purpose of removing
redundant information related to the speaker and the record-
ing conditions [36]. This is achieved by subtracting the mean
feature vector f̄ , over all N speech frames, from the feature
vector fn of each frame

f FMN
n = fn − f̄ (2)

f̄ = 1

N

N∑

n=1

fn. (3)

Aside from the above scheme, we also use a simple nor-
malization technique introduced in [49] in order to alleviate
undesirable illumination effects. This is based on the removal
of the mean intensity over the utterance from each ROI, rather
than the removal of the mean feature vector. We refer to this
scheme as mean removal at the image level. Mean removed
ROIs are computed in the same way as in (2) and (3), where
the mouth ROIs In are used instead of feature vectors fn.

Both approaches for normalization are used in this paper
and are denoted by MRft and MRim, respectively. We eval-
uate them on both the original ROIs I and difference mouth
ROIs Idiff.

B. Shape Features

Geometric visual features extracted from the mouth region
have been examined in the earliest works that targeted lipread-
ing [53]. Experiments on bimodal speech recognition with
HMM classifiers show that, even with the aid of a set of few
simple geometric features, speech recognition accuracy rises
significantly, compared to audio-only systems [54].

Our aim herein is to investigate whether capturing the
dynamics of mouth shape, described for each frame by means
of a relevant projection onto prototype mouth configurations,
can encode accent-specific mouth shape and thus efficiently
discriminate between native and non-native accent. We follow
an approach based on point distribution models [55] and PCA.
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1) PCA on Mouth Shape: The shape features are extracted
frame-wise on 16 rescaled registered mouth points derived
from the set T reg, which is produced in the output of the mouth
ROI extraction procedure (see Section V-A1). We retain only
16 mouth points, out of the 34 lower face points. Specifically,
we accumulate the (x, y) coordinates of these 16 points T reg

n

computed at each frame n in a single 32-D vector. Next, we
apply PCA on the set of such feature vectors computed for
all training speech samples. Again, we only retain the coef-
ficients that are associated with the components collectively
accounting for 95% of the total variance. The number of those
components for our MOBIO database training set turns out to
be 3. In order to enrich the representation and also enclose
dynamic information, prior to the classification stage, first- and
second-order time derivatives of the coefficients are appended.
This results in a shape feature vector of dimensionality equal
to 9.

2) Normalization: FMN is applied, in an identical way as
in (2) and (3). Both the unnormalized and mean removed
(MRft) version of the shape features are examined for the
first experiment of this paper.

VI. EXPERIMENTAL PROTOCOL—IMPLEMENTATION

DETAILS

A. Formation of Sets

As mentioned above in Section IV, we use totally 272 sam-
ples from 56 subjects—135 samples belonging to 28 native
English speakers and 137 samples to 28 non-native English
speakers. We evaluate the proposed framework by means of
fourfold subject-independent experiments, so that collectively
all data are used for testing. Each fold contains the visual
speech data that correspond to 14 subjects, seven native, and
seven non-native speakers (68, 69, 67, and 68 samples for the
folds 1, 2, 3, and 4, respectively). For each of the four runs,
the training set is composed of two folds, while one fold is
used for the validation set and one for the test set. Thus, the
three sets consistently include samples from different subjects
and are also balanced over the two accent classes. The valida-
tion set serves to optimize the number of states for the HMMs
for each fold. The best topology, which is tuned according to
the mean value of the F1 measure for the two classes, is used
for testing. The same distribution of samples/subjects across
the four folds is utilized for all the experiments reported in
this paper, thus establishing a consistent protocol.

B. Normalization Variants

The use of original or difference (diff) mouth ROIs
(see Section V-A1) and the options of using no normaliza-
tion scheme, mean removal at the feature level (MRft), or
at the image level (MRim) (see Section V-A3), imply six
different variants for each appearance feature examined. For
the unnormalized features at the original ROIs, we use no
notation, while for the remaining five combinations, we use
the notation MRft, MRim, diff, diffMRft, and diffMRim. For
the appearance-based PCA descriptor, since each time we
retain the components that account for 95% of the total vari-
ance, the dimensionality varies with the normalization scheme

used. The resulting sizes of the normalization variants PCA,
PCAMRft, PCAMRim, PCAdiff, PCAdiffMRft, and PCAdiffMRim
are, respectively, 19, 19, 57, 58, 58, and 62.

C. HMMs Topology and Parameters

HMMs [16] have been widely used for accent
analysis, classification, and detection in audio-based
approaches [2], [5], [15]. In this paper, we hypothesize
that HMM-based modeling will be able to unveil transitions
in the speech evolution that could characterize accent-related
traits such as effects associated with pronunciation, lexical
stress, and articulation. We presume that the temporal aspect
is not to be discarded, thereby regarding HMMs as more
advantageous than GMMs for our framework. Our HMMs
are constructed so that they do not rely on word or subword
models. In other words, our models are given the task of
modeling the entire speech segments as time-series data. In
this way, our system is more generic, as our models are not
vocabulary-specific. The idea of using HMMs to directly
model time-sequential information as a whole, rather than
separately in sub-units, is not new. For instance, continuous
HMMs have been successfully employed in this fashion
to categorize music clips into music genres [56]. Also,
Schuller et al. [57] approached emotion recognition by
feeding acoustic low-level descriptors, such as adjusted pitch
and energy contours along with their first- and second-order
derivatives, into emotion-specific continuous HMMs.

Two HMMs are learned, one for each accent class for
each experimental fold. As a baseline topology, we use
continuous-density left-right HMMs with no state skips and
with one GMM mixture component for the observations of
each emitting state. Indicative validation set results obtained
by using models with skips between states and more than
one GMM components showed no significant improvement
in performance and thus are not reported. For classification,
a Viterbi decoder [58] is used to estimate the average prob-
ability P(x|Ci) that the sequence of feature vectors x =
{x1, x2, . . . , xn} corresponding to the whole speech example
is produced by each of the two accent models Ci, i ∈ {1, 2}
(1: native and 2: non-native). The test utterance is finally
assigned to the accent class i∗ that yields the highest like-
lihood, i.e., i∗ = arg maxi P(x|Ci).

In our experiments, HMMs were trained using the hidden
Markov model toolkit (HTK) [58]. First, we manually create
prototype models, which have zero mean and unity variance
for the output distribution of states and a transition matrix that
follows the topology constraints. The models are initialized
and, subsequently, reestimated through the iterative Baum–
Welch algorithm [58], with a convergence threshold of 10−5.
The number of states (referring to the total number of states,
i.e., the emitting states plus the first and last state) is varied
in the interval {5, 6, . . . , 20}, and the value yielding the high-
est mean F1 measure on the validation set for each feature
is used for the experiments on the test set. Thus, for each
fold we use a different optimal HMM for testing, according
to the performance obtained on the corresponding validation
set. The classification accuracy measure reported for the test
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set results is the one produced by HTK, that is, the percentage
of the correctly classified examples over the total number of
test examples.

VII. TEXT-DEPENDENT EXPERIMENTS

Native/non-native visual-only accent discrimination results
for the TD experiments conducted in this paper are reported
here. The presentation of results aims also at a compara-
tive evaluation across the different features and normalization
schemes examined.

A. Experiment 1—Training and Test on Whole Utterances

In this experiment, we evaluate our framework using whole
utterances, that is, the feature vectors in the training, valida-
tion, and test set for each fold, correspond to different subjects
reading the same three-sentence paragraph (see Section IV).
Results, in terms of average classification accuracy on the test
set over the four folds, are presented in Table I.

First of all, classification scores yielded by the best normal-
ization for each feature reveal the superiority of appearance
features over the shape-based features. This conforms to
evidence that geometric features are not as capable of encapsu-
lating visual speech information, as appearance features [36].
This behavior is to be expected, as shape is related directly
to coarse movement, while appearance reveals fine movement
and tale-telling transient features. In other words, the posi-
tioning of the mouth and flesh around it mainly accounts for
different sounds coming out of mouths with similar shapes.
Based on the above, the shape features are not examined in
the experiments that ensue in this paper.

Appearance features perform well in modeling accent-
sensitive speech dynamics, with the unnormalized HOG
descriptor yielding the highest average accuracy of 71.6%.
HOG efficiently captures local edge orientation information,
which corresponds to bulges and wrinkles in the area around
the mouth, as well as lip configurations. These transient fea-
tures can be manifestations of articulation phenomena in the
visual stream, leading to efficient accent modeling by HOG.
High mean accuracies of 71.0% and 68.8% are also fur-
nished by the frequency-based descriptors DWT and DCT,
respectively. This finding is congruent with lipreading results
reported in [50], where frequency-based image transforma-
tions prove robust when acting in conjuction with visual-only
HMMs. PCA and LBP seem to be less informative for the tar-
get problem when combined with HMMs. This behavior could
be attributed to the higher susceptibility of PCA and LBP to
misalignments and image registration errors.

Feature- and image-based normalization schemes do not
seem to be beneficial for the majority of features. Regarding
the shape-based PCA, the performances of the unnormalized
and normalized features are quite similar (55.9% and 54.4%,
respectively). This suggests that, since PCA is calculated on
globally aligned pose-free points, where speaker-related infor-
mation has already been suppressed, the removal of the mean
feature vector does not lead to information gain for the tar-
get problem. DCT and DWT, which are based on component

TABLE I
RESULTS IN TERMS OF AVERAGE TEST SET CLASSIFICATION

ACCURACY (%) OVER THE FOUR FOLDS OF WHOLE MOBIO DATABASE

UTTERANCES. THE NUMBER IN THE SUBSCRIPT REFERS TO

THE STANDARD DEVIATION (%) FOR THE FOUR FOLDS.
FOR EACH FEATURE, THE RESULT OBTAINED BY THE

BEST-PERFORMING NORMALIZATION VARIANT

IS SHOWN IN BOLDFACE. DECISION-LEVEL

FUSION RESULTS ARE ALSO REPORTED,
CORRESPONDING TO THE COMBINED

ACCENT PREDICTIONS OF HMMS

TRAINED WITH THE THREE

TOP-SCORING APPEARANCE

FEATURES AS WELL AS

ALL FIVE OF THEM

decoupling in the frequency domain, are not assisted by fur-
ther normalization in the pixel domain or in the feature space.
Similarly, the HOG descriptor, whose default computation has
already catered for robust local normalization based on neigh-
boring cells, does not show any performance boost when is
further normalized. Appearance-based PCA seems more infor-
mative when capturing the global texture variance in the richer
visual stream of unnormalized mouth ROIs, rather than in
the sparser image domain of the diff images. Finally, LBP
is the only descriptor that benefits from the diff ROIs. This
is attributed to it being a local texture operator, and thus the
influence of misalignments is alleviated when it is calculated
on the difference ROIs.

After observing that the various appearance features per-
form best on the validation set in different folds, and bearing
in mind that they can capture complementary information in
the visual stream, we decide to combine the outputs of the
corresponding HMMs. Therefore, decision-level fusion is also
examined, that is, accent prediction on each test sample is
provided as the mode of the predictions of three and five sep-
arately trained models. In other words, each test example is
assigned to the class predicted by the majority of three and
five appearance-based classifiers, respectively. For the three-
model combination, the top-scoring appearance features in
average on the validation set are picked, namely DCT, DWT,
and HOG. Fusion results shown in Table I corroborate our
assumption that the synergy of efficient frequency decoupling
by DCT and DWT, and local edge orientation information by
HOG, can lead to more accurate accent classification by the
combined models (73.5% accuracy). Moreover, when global
texture variance and local texture information are incorpo-
rated through the PCA- and LBP-trained HMMs, respectively,
the five-model combination reaches even higher accuracy,
amounting to 76.5%. Note also that the standard deviations of
6.8% and 6.7%, occurring for the corresponding fusion results,
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Fig. 4. Test set classification accuracy (%) obtained for each MOBIO subject
by the DWT-trained HMM. The plot bars corresponding to subjects that belong
to the same test fold (14 subjects per fold) are shown in the same color. Five-
mouth ROI images accompany the graph. Three ROIs correspond to subjects
of the third fold (the one shown in orange), on which the accuracies reached
are among the worst. The remaining two ROIs belong to subjects m111 and
m116, whose samples are tested on the first and fourth fold, respectively, with
resulting overall accuracies of 100%.

are relatively lower than the values characterizing the distri-
butions of results for most of the single-feature schemes. This
highlights that the fusion framework is more robust, with its
performance fluctuating less across the folds, since predic-
tions made by more than one HMMs collectively are more
confident.

The high standard deviation observed for most of the
classification results (reported in the subscript of accuracy
percentages in Table I) can be largely attributed to bad per-
formance achieved on samples of certain MOBIO subjects.
Accent misclassification occurs in the outputs of nearly all
HMMs on most of the samples of those subjects, the major-
ity of which belongs to the third test fold of our experiments.
In Fig. 4, we show the test set classification accuracy, as pro-
duced by the DWT-trained HMM, separately for the samples
of each of the 56 MOBIO subjects. Each fold contains 14
subjects and is shown in different color in the graph. One can
easily notice the presence of “bad-performing” subjects in the
third fold (16.7% for subject f232, 0% for subject m205, and
40% for subject m431, respectively). By observing the char-
acteristic mouth ROIs, which are visualized above the graph
for these subjects, one will easily discern that the ROIs of
subjects f232 and m431 are the result of inaccurate frontal
warping, whereas for subject m205 the illumination is bad and
largely varying across the ROI. We deduce that these factors,
which are detrimental to the quality of mouth ROIs for these
subjects, make it impossible for any feature scheme to capture
the accent-related information correctly. Instead, on subjects
m111 and m116, which belong to the first and fourth fold,
respectively, an accuracy of 100% is achieved by the DWT
descriptor, as well as all the remaining features. As can be
seen in Fig. 4, the corresponding mouth ROIs are much more
reliable in terms of warping, alignment, and illumination.

B. Experiment 2—Test on Isolated Words

In this experiment, we test the HMMs, which have been
previously trained and validated on utterances of the same

TABLE II
RESULTS IN TERMS OF AVERAGE TEST SET CLASSIFICATION

ACCURACY (%) OVER THE FOUR FOLDS OF ISOLATED WORD

UTTERANCES FROM THE MOBIO SET-SPEECH PARAGRAPH.
FOR EACH FEATURE, ONLY THE BEST ACCURACY AMONG

NORMALIZATION VARIANTS IS REPORTED, AND THE

STANDARD DEVIATION (%) FOR THE FOUR FOLDS IS

SHOWN IN THE SUBSCRIPT. DECISION-LEVEL FUSION

RESULTS ARE ALSO REPORTED, CORRESPONDING TO

THE COMBINED ACCENT PREDICTIONS OF ALL HMMS

TRAINED WITH APPEARANCE FEATURES. THE

HIGHEST SCORE ACHIEVED FOR EACH WORD

AMONG THE SINGLE-FEATURE FRAMEWORKS

IS SHOWN IN BOLDFACE

three-sentence paragraph, on speech segments containing iso-
lated words, again retrieved from the utterances of the
same paragraph by the same test set subjects for each
of the four folds. Our aim is to investigate whether the
proposed system can still yield accurate accent predictions
based on short segments of speech, corresponding to word
utterances.

As there were no available word-level transcriptions, the
HTK Toolkit [58] was used to segment the entire paragraph
into words, through monophone-based Viterbi alignment. Nine
words, whose duration in all corresponding utterances exceeds
300 ms, were selected for the current experiment. Prior
to feature extraction, mouth ROIs were upsampled from
15 to 100 frames/s, in order to obtain a sufficient number of
feature vectors for each word. For the word UNDERSTAND,
which appears twice in the three-sentence paragraph, only the
first token is used. Since the same normalization schemes
were again the best-performing in average on the test set of
isolated words like in the previous experiment, we choose
to present only the corresponding results obtained by those
(namely, PCA, DCT, DWT, LBPdiff, and HOG). The mean
value of test set classification accuracy over the four folds,
for each word and feature, is reported in Table II. Results
obtained by decision-level fusion of all five models are shown
in the right-most column. Since the five-model fusion con-
sistently outperformed the three-model combinations across
all words examined, we choose to report only the results of
the former.

Our single-feature frameworks perform quite accurately
on predicting the accent class of the test word utterances.
The frequency-based descriptors DCT and DWT prove again
highly informative for the target task, accounting for the top
two highest classifications scores for all nine words exam-
ined (DCT always yields better accuracy, except for the
word PURPOSES). Another holistic descriptor, namely PCA,
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Fig. 5. Mouth ROIs extracted from visual speech frames corresponding to the word DATABASE, as produced by one native speaker (first row: subject
m109, phase I, session 05, and frames 78–83) and one non-native speaker (second row: subject f502, phase I, session 06, and frames 88–94) from the MOBIO
database. Both samples were correctly classified by our system based on the corresponding top-scoring appearance feature DCT. In the third row, one can see
the spectrograms for the corresponding audio files (left: native speaker/utterance in the first row and right: non-native speaker/utterance in the second row).
For better visualization, the temporal location of the phonemes pronounced by the speakers is shown in the captions of the mouth ROI images for the video
stream, and in the time axes of the spectrograms for the audio stream, respectively.

accounts for the third best performance on seven out of the
nine words. These three global transformations are known for
their discriminative power in visual speech processing, even
for the case of short utterances of isolated words [36]. On
the other hand, the local edge orientation-based descriptor
HOG accounts for lower performance in the current exper-
iment, compared to the experiment of the previous section.
This happens presumably due to the effect of interpolation arti-
facts and image registration discontinuities induced on mouth
ROIs by the upsampling procedure. Finally, again many mis-
classifications occur for the LBP-trained HMMs, showing a
pattern similar to that observed in the previous experiment
(see Section VII-A).

The best accuracy across words, produced by a single
HMM, is 70.3% and is reached by means of the descriptor
DCT on the word BEHAVIOR. The high accuracy achieved
specifically on this word might be partly attributed to the dif-
ficulty in pronounciation that the voiceless fricative “h” poses
to non-native speakers of English [59]. It is worth noting
that higher accuracy is obtained for relatively longer words,
such as INFORMATION and RESPONSIBLE, as opposed to
shorter words, such as STATES and PURPOSES. However,
we believe that the longer duration of the former is not the
sole factor that could explain the higher performance. As
a matter of fact, these longer words involve more compli-
cated rhythmic patterns in their pronunciation, which differs
markedly between the two accent classes. The high percent-
ages furnished for specific words as opposed to others might

be also due to phoneme substitutions occurring frequently
when they are uttered by non-native speakers. In Fig. 5,
one can see the mouth ROIs corresponding to an utterance
of the word DATABASE, as pronounced by one native and
one non-native speaker. Note that in the case of the native
speaker the first “a” in the word DATABASE is pronounced
as “ey,” whereas the same vowel is pronounced as “ah”
by the non-native speaker (more evident from the inspec-
tion of the spectrograms). Also, one can easily notice from
the visual speech frames that in the case of the non-native
speaker the labial consonant “b” is pronounced much more
intensely.

The framework that combines the accent predictions of
five HMMs through majority voting accounts for boost in
classification accuracy over the single-feature schemes, for
seven out of nine words examined. This behavior is in accor-
dance with the results of the previous experiment, where again
fusion was beneficial. Only for the words RESPONSIBLE
and STATES, on which there is large deviation from the
accuracy achieved by the top-scoring DCT compared to
that of the remaining four features, does fusion result in
performance drop. The varying discriminativeness of each
word’s pronunciation across the two accent classes is again
depicted in the fusion results. Words involving more compli-
cated rhythmic patterns and being more likely to give rise
to phoneme substitutions when pronounced by L2 speakers
(e.g., INFORMATION and BEHAVIOR), correspond to higher
accuracies.
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TABLE III
RESULTS IN TERMS OF MEAN CLASSIFICATION ACCURACY (%) OVER THE 12 FOLDS ON THE TEST SETS OF THE MOBIO SENTENCES. RESULTS FOR

BOTH TD AND TI SCENARIOS, ARE PRESENTED IN THE SUBTABLES BELOW. THE NUMBER IN THE SUBSCRIPT REFERS TO THE STANDARD

DEVIATION (%) OF THE ACCURACY VALUES OVER THE 12 FOLDS FOR EACH FEATURE-NORMALIZATION COMBINATION. (a) TD. (b) TI

(a) (b)

VIII. TEXT-INDEPENDENT EXPERIMENTS

In all the subject-independent experiments reported above,
the speech content of the test examples was identical to
some or the whole part of the training speech utterances
(Sections VII-B and VII-A, respectively). In the experiment
of this section, our goal is to examine the efficacy of our
method in a TI experimental scenario.

To conduct a fair comparison between the TD and TI case,
we do the following: for each of the four folds, we keep the
training set fixed, and test on examples with matching (non-
matching) speech content for the TD (TI) case. We perform
the TD and TI experiments for each of the three sentences
of the MOBIO paragraph (see Section IV). First, we train
our models on the first sentence for both TI and TD, validate
them (i.e., optimize the number of HMM states) on the sec-
ond (first) sentence for the TI (TD) case, and test them on the
third (first) sentence for the TI (TD) case. For the second and
third sentence, the two experiments are performed in a similar
fashion. In other words, in the TD scenario the speech content
is fixed across all three sets, while in the TI scenario each set
contains examples that correspond to a different sentence of
the MOBIO paragraph. For each of the aforementioned three
experiments (one for each sentence, both TD and TI), we per-
form the same fourfold cross-validation, by using 28 subjects
for the training set, 14 for the validation set, and the remaining
14 for the test set, in each run. The combination of one exper-
iment per sentence and four folds per experiment results in 12
accuracy values for each of the TD and TI cases. The mean of
the classification accuracies over the 12 folds for each feature-
normalization combination is reported in separate subtables for
the TD and TI scenario in Table III.

From the comparative inspection of the results in Table III
for the two cases, it is evident that there is a trend for higher
accuracies for the text-dependent scenario, compared to the
text-independent counterparts. One characteristic example of
TD superiority is the unnormalized DCT that yields 68.0%
for the TD case, as opposed to 62.6% in the TI case. This
is quite intuitive, as in the TD case, the modeling for the
two accent classes is not affected by speech dynamics entailed
by the presence of different words, hence articulation transi-
tions. Frequency-based appearance representations, i.e., DCT
and DWT, again work well, furnishing accuracies consistently

Fig. 6. Classification accuracies (%) yielded by the unnormalized DCT
appearance feature for each MOBIO sentence, both for the TD and TI sce-
narios. The height of each bar in the graph corresponds to the mean value
over the four folds of each experiment shown.

higher than 60% for the TD case [Table III(a)]. Nonetheless,
it is worth noting that, even in the more demanding TI case,
our framework classifies the speaker’s accent at a performance
much higher than chance level, with PCA achieving the best
performance of 65.5% [Table III(b)].

Comparing the TD results [Table III(a)] with the cor-
responding accuracies achieved in our first text-dependent
experiment (Table I), one can notice that performance drops.
This divergence can be attributed to the fact that in the former
case longer utterances (three-sentence paragraph) are used to
train the models, whereas in the latter case the training set
contains shorter (one-sentence) speech examples. The same
assumption holds for the test data as well. This behavior is
in conformity with evidence from research in visual-only lan-
guage identification, according to which performance increases
with the length of speech data [22].

In Fig. 6, we show the performance of the unnormalized
DCT descriptor for both the TD and TI cases, separately for
each MOBIO sentence. In the bar graph, a sentence index
of value 1 denotes that training has been performed on the
first sentence for both cases, while the test sentence is the
third (first) one for the TI (TD) case. The notation is simi-
lar for the remaining two sentence indices. In the TD case,
best performance is achieved when the HMMs are trained and
tested on the first sentence. This could be due to the longer
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duration of the first sentence. Performance is almost identical
for the second and third sentence, which have similar dura-
tions. Instead, in the TI case, the lowest accuracy is achieved
when sentence index equals 1, i.e., when the model is trained
on the first sentence, validated on the second and tested on the
third. One speculation is that when training HMMs on the first
sentence, which is composite and contains also longer words
and pauses, they unavoidably learn these prominent dynamics
related to speech content. Thus, when these are not encoun-
tered in the remaining two sentences, which are simpler in
structure, performance in accent prediction drops.

IX. CONCLUSION

In this paper, we presented a fully automated approach to
discriminating native from non-native speech in English, based
on visual features only. Overall, this paper aims to provide a
basic study of visual-discrimination between native and non-
native speech, thus introducing a research area which can be
extremely useful in biometric applications. We demonstrate
that useful information for discrimination between native and
non-native speech is present in the visual stream and thus is
expected to improve performance when combined with audio-
only methods, especially in noisy environments.

Subject-independent cross-validation experiments were con-
ducted on continuous fixed-content speech and isolated word
utterances captured by mobile devices. Our framework was
also comparatively evaluated on both the text-dependent and
text-independent scenarios.

Various appearance- and shape-based features were exam-
ined. A comparative evaluation of features was performed,
revealing the superiority of appearance-based features over
shape features. The best accuracy score of 71.6% is achieved
by the HOG descriptor. Decision-level fusion consistently pro-
vides performance boost over single HMMs, with the fusion
of five HMMs yielding accuracy of 76.5%. Our framework
classifies accent accurately also in short speech segments of
isolated words. Finally, even in the case of text-independent
experimental scenario, performance remains much higher than
chance level.

In this paper, classifiers were assigned the task to model the
evolution of visual speech belonging to each accent class as
a time-series input and produce a single accent label for the
whole test utterance. No constraints were imposed on these
articulation transitions, apart from the inherent assumptions
of the classifier (e.g., the Markov assumption and left-right
topology of HMMs). We plan to investigate alternative ways
to aid the sequential modeling task by reinforcing meaning-
ful abstracting, quantization, or segmentation preprocessing
on the speech utterance. We also aim to examine audiovisual
approaches for accent classification.
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