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Abstract
The automatic detection and classification of social signals is
an important task, given the fundamental role nonverbal behav-
ioral cues play in human communication. We present the first
cross-lingual study on the detection of laughter and fillers in
conversational and spontaneous speech collected ‘in the wild’
over IP. Further, this is the first comparison of LSTM and GRU
networks to shed light on their performance differences. We
report frame-based results in terms of the unweighted-average
area-under-the-curve (UAAUC) measure and will shortly dis-
cuss its suitability for this task. In the mono-lingual setup our
best deep BLSTM system achieves 87.0 % and 86.3 % UAAUC
for English and German, respectively. Interestingly, the cross-
lingual results are only slightly lower, yielding 83.7 % for a sys-
tem trained on English, but tested on German, and 85.0 % in
the opposite case. We show that LSTM and GRU architectures
are valid alternatives for e. g., on-line and compute-sensitive ap-
plications, since their application incurs a relative UAAUC de-
crease of only approximately 5% with respect to our best sys-
tems. Finally, we apply additional smoothing to correct for er-
roneous spikes and drops in the posterior trajectories to obtain
an additional gain in all setups.
Index Terms: Social signal classification, computational par-
alinguistics, deep neural networks, LSTM, GRU, cross-lingual

1. Introduction
The detection and classification of social signals, in particular
laughter and filled pauses is an important task in the area of
computational paralinguistics, since these non-verbal cues con-
vey information about the speaker’s emotional state, person-
ality, and other speaker-related traits [1], esp. in spontaneous
speech. While laughter might indicate happiness, amusement,
but also embarrassment or discomfort, fillers are mostly found
to hold the floor in human communication. Spotting these cues
in speech could therefore also be highly valuable in situated in-
teraction, where users interface with socially intelligent agents,
to provide a more natural and successful dialog.

Since both laughter and fillers can occur basically at any
point in the audio stream, using a separately trained expert
model to detect the begin and end of these events can be benefi-
cial in some use cases. One possible application could be ASR
systems, since it is difficult to find a suitable language model
for acoustic events that can occur everywhere.

The first relevant work on detecting non-verbal vocaliza-
tions from speech, and esp. laughter, appeared already a decade

ago [2], but only used a 1-layer feed-forward (FF) neural
network. Other work on this topic [3] applied several ap-
proaches based on dynamic modelling and Hidden Markov
Models (HMM), Conditional Random Fields (CRF), and Sup-
port Vector Machines (SVM), or Non-Negative Matrix Factor-
ization (NMF) [4].

The Social Signals Sub-Challenge of the Interspeech 2013
Computational Paralinguistics Challenge (ComParE) [5] further
kindled research activities on laughter and filler detection [6,
7, 8, 9] by providing a baseline database to compare research
efforts.

More recently authors have continued their efforts applying
deep neural networks [10, 11, 12], genetic algorithms [13], and
context-aware probabilistic decisions [14]. Finally, the research
community has seen a substantial increase of research activity
investigating audiovisual (AV) laughter recognition [15, 16, 17,
18] in recent years. Since either early or late fusion is usually
applied to merge the audio and video streams at some point,
an improved pure-audio based detector could help improve the
overall AV system.

1.1. Contribution of this work

In this study we present a mono-lingual and the first cross-
lingual study on the detection and classification of laughter and
fillers, i. e., vocalisations such as “ehm”, “uhm”, or “äh” (Ger-
man) in conversational and spontaneous speech on a database
recently collected ‘in the wild’ by Voice over IP. We focus on
the frame-wise, speaker-independent classification of the three
classes laughter, filler, and garbage, comprising all other vocal-
izations, including speech and silence. Further, to our knowl-
edge, this is the first study on the performance differences
between bi-directional Long Short-Term Memory (BLSTM),
(forward-directional) Long Short-Term Memory (LSTM), and
Gated Recurrent Units (GRU) networks on a social signal pro-
cessing task. Note that GRU is not considered bidirectionally,
as it is considered mainly as a low computational cost alterna-
tive.

In the mono-lingual scenario we train, validate, and test on
either British English or German separately, and evaluate the
respective network performances against each other. Further,
we show the beneficial effect of posterior smoothing. Then, we
extend the experiments to the cross-lingual case, where we train
and validate on one language and test on the other.

In Section 2 we define the BLSTM, LSTM, and GRU mod-
els we use in our experiments and shortly discuss the evalua-



tion metric we used. Section 3 gives an overview of the SEWA
database and some statistics for British-English and German,
the two languages under investigation. We present and discuss
our results and findings in Section 4 and give some final con-
clusions and an outlook for future work in Section 5.

2. Methodology
2.1. Network Architectures

The basic LSTM with peephole connections is defined as
(cf. [19])

zt = g(Wzxt +Rzht−1 + bz) block input
it = σ(Wixt +Riht−1 + pi � ct−1 + bi) input gate
ft = σ(Wfxt +Rfht−1 + pf � ct−1 + bf ) forget gate
ct = it � zt + ft � ct−1 cell state
ot = σ(Woxt +Royt−1 + po � ct + bo) output gate
ht = ot � g(ct) block output

where � denotes the element-wise (Hadamard) product, σ
the element-wise non-linear logistic sigmoid 1

1+exp−x and g the
hyperbolic tangent activation function. In the case of a deep
recurrent neural network, we simply feed the output h̃t into the
next layer as input xt.

In the type of BLSTM that we will use in this study, the in-
puts xt are propagated through one to several layers of two sep-
arated LSTM networks – one in the forward direction, where
we feed the features in their natural order, and one in the back-
ward direction, where the features are fed into the network in
the time-reversed order. We only combine the final outputs of
these possibly deep networks at their output level to generate
the output of the BLSTM.

In the GRU, proposed recently by Cho et al. [20], the output
gate is omitted and the remaining gates are referred to as update
gate, zt, and reset gate, rt. The GRU is defined as (cf. [21])

zt = σ(Wzxt + Uzht−1 + bz) update gate
rt = σ(Wrxt + Urht−1 + br) reset gate

ht = (1− zt)� ht−1 + zt � h̃t activation

h̃t = g(Whxt + Uh(rt � ht−1) + bh)

For any network, we pass the final output into a softmax
layer defined by

softmaxj(z) =
expzj∑K

k=1 exp
zk

for j = 1, ...,K (1)

which normalizes the resulting output values to add up to
one. This allows us to interpret the outputs of the softmax layers
as posterior probabilities.

The number of total parameters Ntot in the respective
single-layer, vanilla networks with Ncell cells and Nin inputs
are given by

N lstm
tot = 4 ·Ncell · (Ncell +Nin + 1) (2)

Nblstm
tot = 2 ·N lstm

tot (3)
Ngru

tot = 3 ·Ncell · (Ncell +Nin + 1) (4)

which do not account for an output, e. g., softmax, layer,
which is of size Nclasses = 3 in our case.

2.2. Evaluation Metric

In the Interspeech 2013 ComParE Vocalization Challenge the
unweighted-average area-under-the-curve (UAAUC) was used
as the official challenge measure [5].

Gosztolya later critized the UAAUC as being an unsuitable
measure for social signal detection [22]. First and foremost he
argues against the frame-based usage of the UAAUC and claims
that exact determination of boundaries of social signals is un-
reasonable in many circumstances. Second, he finds that simple
posterior smoothing leads to a surprisingly high increase in the
AUC of the classes. Instead, he proposes to convert the frame-
level posterior scores into time-aligned, utterance-level occur-
rence hypotheses of the social signal labels using an HMM and
subsequently rate these via measures like precision, recall, or
the F-score. In cases where it merely suffices to detect, if social
signals are uttered we agree that this might be a valid approach.
Nonetheless, there are scenarios where it is necessary to know
the respective time boundaries. In this case utterance-level scor-
ing is insufficient.

We counter that the AUC is an excellent measure of bi-
nary classification performance, as it allows tp estimate the gen-
eral model performance without the need to fix a specific deci-
sion threshold and rather embraces the range of possible thresh-
olds [23]. Sub-optimal performance using precision-recall (PR)
measures often arises from unsuitable threshold selection, esp.
in the case of imbalanced data distributions across classes, as
is usually the case for real life vocal signals. Consequently,
high AUC values do not imply optimal selection of thresholds
a-priori, but rather show the potential optimal performance.

3. Database
The SEWA (‘Sentiment Analysis in the Wild’) database consists
of audio-visual recordings of 398 subjects from 6 different cul-
tures, showing spontaneous and natural behaviour. All record-
ings were made ‘in the wild’, i. e., not under laboratory settings
but on arbitrary desktop PCs or notebooks with standard web-
cams and microphones. The data collection process took place
over the Internet on a dedicated platform based on OpenTok

All subjects participated in pairs, staying in different rooms,
either at their home or in an office. Each subject had to watch
4 different commercials, while being recorded. The spots had
been chosen with the intent to evoke various emotions, such as
compassion, joy, or boredom. After watching the last spot of
90 s duration the subjects were asked to discuss about this last
clip in a video chat. There were no restrictions on the aspects to
discuss; the maximum length of the conversation was 3 minutes,
but participants were allowed to finish at any time earlier. It was
required that both subjects know their partner (either relatives,
friends, or colleagues), to ensure that an unreserved discussion
could develop.

The pairs were balanced w. r. t. gender (female-female,
female-male, male-male). Different age ranges (18+) are rep-
resented in the database; however, about half of the subjects are
between 18 and 30 years old.

The whole SEWA database was transcribed manually, in-
cluding the nonverbal vocalisations laughter and filler. Given
the fact that most of these events occur during the video chat
sessions and not during the sessions of subjects watching ad-



vertisements, our experiments are restricted to the video chats
of British and German subjects; only the audio recording was
taken into account.

Table 1 shows the distribution over the SEWA database for
the examined languages British and German.

Table 1: Distribution statistics for the SEWA database

British German
number of subjects 66 64
total duration (min) 90 89
number of frames 546 233 533 470

- laughter 10 843 (2.0 %) 16 700 (3.1 %)
- filler 3 2701 (6.0 %) 32 017 (6.0 %)

4. Experiments and Results

4.1. Acoustic Feature Set

Since in this study we adopt a frame-wise detection and classi-
fication approach, we use the openSMILE open-source toolkit
v2.3 to extract the low-level descriptors (LLD) of theComParE
Feature Set [24] every 10 ms, which results in 130 features
every time frame. In particular, 65 static, acoustic LLDs and
their corresponding first-order derivatives are extracted for each
frame, since previous studies have shown that these features
prove to be particularly beneficial for computational paralin-
guistic tasks [25, 26]. All feature vectors underwent z-score
normalization, i. e., were transformed to have zero mean and
unit variance, where the first-order moments were computed on
the corresponding training set.

4.2. Experimental Setup

For each language we divided the the set of utterances into a
fixed training (17/18 speaker pairs), validation (7 pairs), and test
(8 pairs) subset, and we applied gender-pair balancing, i. e., the
proportion of female-female, male-male, and male-female pairs
is approximately constant across the subsets. Even though the
amount of data is relatively limited w.r.t. number of parameters
of the models we investigated, we decided to prescind from n-
fold evaluation, in order to be able to more deeply explore the
parameter space and minimize any overtraining effect.

All our models, described in Section 2.1, were trained with
TensorFlow [27], using cross-entropy (CE) as the loss func-
tion and the first-order gradient-based Adam optimization al-
gorithm [28], which was used with its default parameter values,
except the learning rate, which we varied between 10e−4 and
10e−2. We trained our models on the full utterances, using the
130-dimensional input feature vector described in Section 4.1
as is (i. e., without context expansion) and shuffling the file or-
der across epochs to speed up training and to improve gener-
alization. Since Adam is an adaptive-learning rate algorithm,
we did not use any annealing, but instead a patience-based ap-
proach, where we stopped training, if there was no improvement
of the UAAUC on the validation set for more than 5 epochs.
After stopping we chose the network that achieved the highest
UAAUC value on the validation set. This approach was found
to be robust in previous studies [11, 10].

4.3. Mono-lingual Classification Performance

First, we examined the mono-lingual case in order to gain some
understanding of the performance of the different model archi-
tectures and to find a suitable topology that worked well on
this database. We trained our networks on the respective train-
ing set and evaluated on the validation set for the each lan-
guage under investigation separately, until the stopping crite-
rion was met (cf. Section 4.2). We varied the topology per-
forming a grid search over the number of cells Ncell in each
layer with Ncell ∈ [4, 512] and over the number of layers
Nlayers ∈ [1, 2, 3]. For each combination, we varied the learn-
ing rate over the values reported in Section 4.2 – in most cases
10e−2 gave best results. Table 3 shows the optimal values we
obtained for three different topologies for both languages.

Interestingly, for both languages and all model types a two-
layer, inverse pyramidal topology with 32 cells in the first layer
and 16 cells in the second layer worked best. The results com-
pare very favorably against the previously reported numbers on
the SSPNet Vocalization Corpus (SVC), which was used in the
Social Signals Sub-Challenge of the Interspeech 2013 Com-
ParE [5], given the considerably more difficult recordings con-
ditions of the SEWA database.

The results for British and German are close to each other,
which shows the robustness and language-independence of
spotting social signals purely from speech with a deep learn-
ing approach. Further, removing or adding another layer does
not improve classification accuracy.

We find it highly interesting that the LSTM and especially
the GRU architectures compare very favorably to the BLSTM
model. We conjecture that one of the main reasons GRU wins
over LSTM is because it has lower complexity, i. e., has fewer
parameters, which again might improve generalization.

Finally, we also tried training the models with dropout reg-
ularization (p = 0.5), where dropout was only applied to the
input and outputs of the recurrent layers [29], i. e., not the re-
current connections; however, this slightly decreased the per-
formance and we decided to not further follow this idea in this
study.

4.4. Effect Of Posterior Smoothing

In previous studies [11, 10], it was found that the trajectories of
the posterior probabilities at times show some unwanted fluctu-
ation which leads to false detection and that performing smooth-
ing of the posteriors at the output of the networks improves per-
formance. This makes sense from an articulatory point of view
of the human speech production system.

We tried this idea and for each trained system (feature
model) we trained another model using the resulting posteriors
as input for another model performing the smoothing (posterior
model). To be more precise, we used the posteriors before ap-
plying the softmax nonlinearity at the output layer, i. e., the log-
its. We point out that we trained the posterior models separately
without propagating any updates down to the feature model and
that we z-score normalized the logits.

For all experiments we used matching network types for the
feature and posterior models, e. g., for a BLSTM feature model
we also used a BLSTM posterior model. Moreover, we trained
the posterior models in a similar way as described in 4.3 and
performed a grid search of the number of cells Ncell ∈ [1; 64].
We found that the optimal number of cells in the posterior net-
work is around Nposterior

cell = 8. Table 4 shows the effect we
obtained for the combination of the best feature model topology
from Table 3 and the posterior model, resulting in a full network



Table 2: UAAUC [%] for cross-lingual setups British (train & validation) – German (test) and German-British for various deep
neural architectures, all with topology 130-32-16-3 (no posterior smoothing) and 130-32-16-3-16(blstm)/8(lstm,gru)-3 (with posterior
smoothing). For a detailed description refer to the text.

train/validation – test British-German German-British
model BLSTM LSTM GRU BLSTM LSTM GRU
smoothing no yes no yes no yes no yes no yes no yes
approx. # parameters 48k 51k 24k 25k 18k 18k 48k 51k 24k 25k 18k 18k
valid 85.6 87.6 82.4 85.0 86.9 86.8 88.0 88.7 86.6 77.9 86.6 86.8
test 83.7 84.4 78.4 79.6 81.1 81.3 85.0 85.6 80.6 82.4 83.7 83.8

Table 3: UAAUC [%] for mono-lingual training and testing
without posterior smoothing for three different model topolo-
gies.

model topology
British German

valid test valid test
130-32-3 79.7 82.7 82.7 83.8

BLSTM 130-32-16-3 84.7 87.0 83.0 86.3
130-32-32-32-3 83.4 85.0 83.0 86.1

130-32-3 79.9 80.2 81.1 82.9
LSTM 130-32-16-3 80.4 81.6 81.6 83.1

130-32-32-32-3 80.7 81.6 78.6 77.6
130-32-3 77.4 78.9 81.6 84.3

GRU 130-32-16-3 80.0 84.0 83.3 85.9
130-32-32-32-3 80.7 81.6 82.8 85.6

topology of 130-32-16-3-8-3.

Table 4: Mono-lingual UAAUC [%] on the test set with poste-
rior smoothing for the optimum topology 130-32-16-3-8-3.

model
British German

posterior smoothing posterior smoothing
no yes no yes

BLSTM 87.0 87.5 86.3 86.7
LSTM 81.6 82.7 83.1 83.9
GRU 84.0 84.3 85.9 86.1

The overall gain in UAAUC lies between 0.2 % and 1.1 %.
It should be noted that this gain depends on the amount of laugh-
ter and filler events found in the data.

4.5. Cross-lingual Classification Performance

In the cross-lingual experiments, we followed the same ap-
proach as described for the mono-lingual case, the only differ-
ence being the use of data sets. For each language, we trained
on the combination of the mono-lingual training and validation
sets, in order to increase the amount of training data, and used
the mono-lingual test set as the validation set. Then, we evalu-
ated on the other language’s full data set.

We found that the optimal network topology for all model
architectures was 130-32-16-3 for the feature models, as in the
mono-lingual case, and 16 for BLSTM or 8 for LSTM/GRU,
respectively, for the posterior model. Table 2 depicts the results
for the best setups.

As in the mono-lingual case the BLSTM models outper-
formed LSTM and GRU models, but the gap is relatively small.
Also, GRU again beat the LSTM models and in the German-
British setup is only 0.5% below the BLSTM results. This find-
ing is very important, since it shows that for on-line or low-
resource applications resorting to GRU models constitutes a vi-
able approach and the expected decrease in performance is very
limited.

We further investigated also the effect of posterior smooth-
ing and found that it consistently improves results in all experi-
ments. Interestingly, the gains were smallest for the GRU mod-
els and largest for the LSTM models.

5. Conclusions and Outlook
This study presents the first mono-lingual and cross-lingual re-
sults on the detection of laughter and fillers in conversational
and spontaneous speech collected ‘in the wild’ over IP, the
SEWA database. Further, we present a first extensive compar-
ison of BLSTM, LSTM, and GRU networks and find that the
latter models, esp. the GRU models, compare very favorably to
the more complex BLSTM models. This finding is especially
important for applications which cannot afford long time delays
or have limited compute constraints.

In the mono-lingual setup our best deep BLSTM system
achieves 87.0 % and 86.3 % UAAUC for English and German,
respectively. The cross-lingual results are almost on-par, yield-
ing 83.7 % for a system trained on English, but tested on Ger-
man, and 85.0 % in the opposite case. Finally, we show that
smoothing the posterior trajectories obtained with these models
further improves the results by approximately 0.5 % absolute.

We plan to extend these investigations to the full SEWA
database, comprising 6 languages, and to perform a more in-
depth cross-lingual analysis. Further, we will look into the
data imbalance effects of the database and how this could pos-
sibly improve robustness. Moreover, we will combine LSTM
and GRU networks on the recently proposed Bag-Of-Audio-
Words approach [30]. Finally, we also plan to do a full end-
to-end training of the combined feature and posterior models
and examine other network architectures, such as variants of
the LSTM models or Convolutional Neural Networks.
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Classification Using Deep Rectifier Neural Networks with a Min-
imal Feature Subset,” Archives of Acoustics, vol. 41, no. 4, pp.
669–682, 2016.

[13] G. Gosztolya, “Detecting Laughter and Filler Events by Time
Series Smoothing with Genetic Algorithms,” in Proceedings of
SPECOM, Budapest, Hungary, Aug 2016, pp. 232–239.

[14] R. Gupta, K. Audhkhasi, S. Lee, and S. Narayanan, “Detecting
Paralinguistic Events in Audio Stream Using Context in Features
and Probabilistic Decisions,” Computer Speech and Language,
vol. 36, no. C, pp. 72–92, Mar 2016.

[15] S. Petridis and M. Pantic, “Audiovisual discrimination between
speech and laughter: Why and when visual information might
help,” IEEE Transactions on Multimedia, vol. 13, no. 2, pp. 216–
234, Apr 2011.

[16] ——, “Is this joke really funny? Judging the mirth by audiovisual
laughter analysis,” in Proceedings of IEEE International Confer-
ence on Multimedia, Cancun, Mexico, Jul 2009, pp. 1444–1447.

[17] S. Scherer and M. Glodek and F. Schwenker and N. Campbell and
G. Palm, “Spotting Laughter in Natural Multiparty Conversations:
A Comparison of Automatic Online and Offline Approaches Us-
ing Audiovisual Data,” ACM Trans. Interact. Intell. Syst., vol. 2,
no. 1, pp. 4:1–4:31, Mar 2012.

[18] S. Petridis, M. Leveque, and M. Pantic, “Audiovisual detection
of laughter in human machine interaction,” in Affective Comput-
ing and Intelligient Interaction (ACII 2013), Geneva, Switzerland,
Sep 2013, pp. 129–134.

[19] K. Greff, R. Srivastava, J. Koutnı́k, B. Steunebrink, and J. Schmid-
huber, “LSTM: A Search Space Odyssey,” IEEE Transactions on
Neural Networks and Learning Systems, vol. PP, no. 99, 2015.

[20] K. Cho, A. Ilin, and T. Raiko, “Improved Learning of Gaussian-
Bernoulli Restricted Boltzmann Machines,” in Proceedings of the
International Conference on Artificial Neural Networks, Espoo,
Finland, Jun 2011, pp. 10–17.
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