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Abstract— Unsupervised learning of invariant representa-
tions that efficiently describe high-dimensional time series has
several applications in dynamic visual data analysis. Clearly, the
problem becomes more challenging when dealing with multiple
time series arising from different modalities. A prominent
example of this multimodal setting is the human motion which
can be represented by multimodal time series of pixel intensities,
depth maps, and motion capture data. Here, we study, for the
first time, the problem of unsupervised learning of temporally
and modality invariant informative representations, referred
to as archetypes, from multiple time series originating from
different modalities. To this end a novel method, coined as
temporal archetypal analysis, is proposed. The performance of
the proposed method is assessed by conducting experiments
in unsupervised action segmentation. Experimental results on
three different real world datasets using single modal and
multimodal visual representations indicate the robustness and
effectiveness of the proposed methods, outperforming compared
state-of-the-art methods by a large, in most of the cases, margin.

I. INTRODUCTION

Learning a temporally invariant subset of data points,
referred to as representatives or archetypes, which can ef-
ficiently describe high-dimensional time series is an im-
portant (visual) data analysis problem. Temporally invariant
archetypes are essentially the most informative slow-varying,
data points of the time series and thus they can be used for
summarization, representation, clustering, and segmentation
of high-dimensional time series, such as videos. Representing
time-varying data with a small number of archetypes has
several advantages over working with long high-dimensional
time series. First, archetypes facilitate the removal of outliers
since they are not true representatives of the data. Moreover,
the performance, the memory requirement, and the com-
putational cost of clustering and segmentation algorithms
is improved. The problem of learning temporally invariant
archetypes becomes rather challenging when dealing with
multiple time series arising from different modalities. For
instance, human motion can be represented by multimodal
time series of pixel intensities, depth maps, and motion
capture data [1]. Similarly, a particular human behaviour can
be identified by certain vocal, gestural, and facial features
extracted from both the audio and visual modalities [2]. In
this multimodal setting, the task is to find slow varying or
temporally invariant prototypical data points efficiently de-
scribing the multiple time series with the additional property
of being invariant across different modalities.

Even though learning of archetypes from high-dimensional
(multimodal) time series has not be studied before, the
problem of finding representative data points in static, non-
time-varying, data is well-investigated and several methods
have been proposed [3],[4],[5],[6],[7],[8],[9],[10],[11]. These
methods can be organised into two categories based on
their assumption on the underlying data generation model.
The first category contains methods that assume that the
data lie in a single low-dimensional (i.e., low-rank) sub-
space and find a subset of columns of the data matrix that
corresponds to the best conditioned sub-matrix [3],[4]. The
second category consists of methods assuming the data are
drawn from multiple independent subspaces (or union of
subspaces) and find representative data points by trying to
approximate the data as non-negative [6],[7], sparse [5], or
convex combination [8],[9],[10],[11] of a few other points
in the union of subspaces. This property is known as self-
expressiveness (e.g., [5]), which has been exploited in sub-
space clustering methods [12], [13], [14], [15]. Moreover
these representatives data points approximate the convex-hull
of the data [5],[8],[9],[10],[11].

However, none of the aforementioned methods account for
the sequential relationships between successive data points
in the high-dimensional time series and thus they are not
able to derive temporally invariant data representations. To
account for temporally invariant features or components,
subspace learning methods can be applied. More specifi-
cally, by assuming that data come from a single low-rank
model, the slow feature analysis (SFA) [16] and its variants
extract slowly varying components from high-dimensional
time series. In case of data drawn from a union of subspaces,
temporal subspace segmentation methods can be employed
[17],[18],[19]. However, these algorithms are designed to
extract low-dimensional features rather than finding repre-
sentatives or archetypical data points.

Here, distinct from the previous methods, the temporal
archetypal analysis is proposed, enabling the discovery of
slow-varying and modality invariant data representatives
from multiple high-dimensional time series. In particular,
we seek to express each data point in each time series as
a convex combination of slowly-varying archetypes with the
combination coefficients being shared among the different
modalities. Moreover, the archetypes of each time series are
also restricted to be convex combinations of the data. To find
such invariant archetypes, a novel constrained optimization
problem is solved by employing an iterative algorithm with978-1-5090-4023-0/17/$31.00 c©2017 IEEE



guaranteed convergence.
The performance of the proposed method is assessed by

conducting experiments in unsupervised action segmentation
by employing three different datasets. In particular, the tem-
poral archetypal analysis is tested on both single- and mul-
timodal data. Experimental results indicate the effectiveness
of the proposed approach on this application, outperforming
state-of-the-art compared methods.

Notations. Throughout the paper, matrices (vectors) are
denoted by uppercase (lowercase) boldface letters e.g., X,
(x). The i-th column of X is denoted as xi, while the vector
of ones of compatible dimensions as 1. Matrix elements are
denoted with indexed lowercase letters, e.g., (X)ij = xij .
The set of real numbers is denoted by R. A set of N
real matrices of varying dimensions is denoted by {X(n) ∈
RIn×Jn}Nn=1. The Frobenius norm is denoted by ‖X‖F =√∑

i

∑
j x

2
ij =

√
tr(XTX) where tr(·) is the trace of a

square matrix. The Euclidean norm of a vector is denoted
by ‖x‖2.

II. METHODOLOGY

In this section we present the proposed learning framework
in detail. Moreover, we discuss how it can be used for
segmentation of temporal sequences.

A. Temporal Archetypal Analysis

Let us assume that the visual stream is captured by dif-
ferent attribute types (modalities or views). Such multimodal
cases arise frequently in real world computer vision appli-
cations. As an example, multiple cues of human action and
behaviour can be captured, by employing multimodal time
series (e.g., pixel intensities, depth maps, motion capture
data, or data captured from different views). Combining
information from multiple sources can lead to richer data
representations and improved performance of various ma-
chine learning tasks.

Let us consider a multimodal dataset, denoted by {X(n) ∈
Rdn×T }Nn=1, where each matrix corresponds to a different
modality. We assume that in each modality, the data can
be described using a number of representatives. We can,
thus, use an expression of the form X(n) ≈ A(n)S, where
{A(n) ∈ Rdn×k}Nn=1 contain k representatives associated to
the n-th modality as column vectors, while S contains the
reconstruction coefficients. Another aim of our approach is
to seek for representatives that resemble the original data
and, therefore, provide a more intuitive and informative
description. To this end, we impose the additional constraint
that the representatives must be convex combinations of the
data points. Additionally, each data point is expressed as a
convex combination of the representatives. These properties,
which also introduce a symmetry between the representatives
and the data points, were also employed in the archetypal
analysis method [8], where the extracted representatives are
referred to as archetypes.

Taking the aforementioned constraints into account, the n-
th modality data matrix is expressed as: X(n) ≈ X(n)C(n)S,
where C(n) and S are column stochastic matrices (i.e., the

elements of each column are nonnegative and sum to one). It
should be noted that matrix S is shared among the different
modalities, implying that a common low-dimensional and
modality invariant representation of the data is learned.

The above discussion leads us to the formulation of a
learning framework, expressed by the following optimization
problem:

min
C(n),S

∑
n

‖X(n) −X(n)C(n)S‖2F

s.t. C(n) ≥ 0, S ≥ 0, 1TC(n) = 1T , 1TS = 1T ,

(1)

where n = 1, ..., N , and the constraints ensure that the
representatives are convex combinations of the observations,
as well as that the observations are approximated by convex
combinations of the representatives.

As already mentioned, our objective is to extract tem-
porally invariant representations, or at least representations
which vary slowly in time. In order to achieve this a temporal
regularization term τ(S) operating upon the representation
matrix S is incorporated to the objective function, which
takes the form:

min
C(n),S

∑
n

‖X(n) −X(n)C(n)S‖2F + τ(S) (2)

The temporal term can be expressed as an approximation
of the first order derivative of the representation matrix,
calculated by:

τ(S) = ‖SP‖2F = tr(SLST ), (3)

where P ∈ RT×(T−1) with Pii = −1, Pi+1,i = 1, a matrix
encoding forward differences between columns of S and
L = PPT . This choice is motivated by SFA [16], a method
for identifying invariant or slowly varying features in dy-
namic data. By combining (2) and (3), the final optimization
problem takes the form:

min
C(n),S

∑
n

‖X(n) −X(n)C(n)S‖2F + λtr(SLST )

s.t. C(n) ≥ 0, S ≥ 0, 1TC(n) = 1T , 1TS = 1T ,

(4)

where λ > 0 is a trade-off parameter between the approxi-
mation and the regularization terms.

For the solution of the minimization problem (4), the
algorithmic framework proposed in [20] is employed. This
framework is based on the multiplicative update rules method
for solving the Nonnegative Matrix Factorization (NMF)
problem, originally introduced in [21]. Although the multi-
plicative updates of [21] guarantee that the objective function
is non-increasing, it has been shown that they do not guaran-
tee convergence to a stationary point [22]. Furthermore, their
convergence can be very slow. The algorithmic framework
presented in [20] tackles the aforementioned shortcomings of
the multiplicative updates, providing a fast implementation
for the NMF solution and convergence to a stationary point.
This is achieved by introducing in each iteration an additional
loop of multiplicative updates for each variable, where the
same variable is updated multiple times before the update of
the other.



To solve the minimization problem in (4), the associated
Lagrangian function is expressed as:

L(V) =
∑
n

tr(X(n)TX(n))− 2
∑
n

tr(STC(n)TX(n)TX(n))

+
∑
n

tr(STC(n)TX(n)TX(n)C(n)S) + λtr(SLST )

+
∑
n

tr(Φ(n)C(n)T ) + tr(ΨST ),

(5)

where V =
{
{C(n)}Nn=1,S, {Φ(n)}Nn=1,Ψ

}
, and Φ(n) and

Ψ are Lagrangian multipliers corresponding to the nonnega-
tivity constraints. By differentiating with respect to C(n) we
have:

∂L
∂C(n)

= 2X(n)TX(n)C(n)SST − 2X(n)TX(n)ST + Φ(n)

(6)
Similarly, the partial derivative of the Lagrangian with re-
spect to S is calculated by:

∂L
∂S

= 2
∑
n

C(n)TX(n)TX(n)C(n)S

− 2
∑
n

C(n)TX(n)TX(n) + 2λSL + Ψ
(7)

From the Karush-Kuhn-Tucker (KKT) conditions [23], it
holds that φ(n)ij c

(n)
ij = 0, ψijsij = 0, and also:

(X(n)TX(n)C(n)SST )ijc
(n)
ij − (X(n)TX(n)ST )ijc

(n)
ij = 0∑

n

(C(n)TX(n)TX(n)C(n)S)ijsij

−
∑
n

(C(n)TX(n)TX(n))ijsij + λ(SL)ijsij = 0.

(8)

The last two equations lead to the following multiplicative
update rules:

c
(n)
ij [t]← c

(n)
ij [t− 1]

(X(n)TX(n)ST )ij

(X(n)TX(n)C(n)SST )ij

sij [t]← sij [t− 1]
(
∑

n C(n)TX(n)TX(n) − λSL−)ij

(
∑

n C(n)TX(n)TX(n)C(n)S + λSL+)ij
,

(9)

where matrices L+ and L− are defined as max(L, 0) and
min(L, 0) respectively and operations are applied element-
wise. The procedure followed for solving the optimization
problem in (4) is summarised in Algorithm 1. In the plots
of Fig. 1, the relative reconstruction error (i.e., the ratio of
the reconstruction error e(t) at time t to the initial recon-
struction error e(0)) as a function of iterations is depicted.
The decreasing behaviour of the relative reconstruction error
indicates the good convergence properties of the proposed
algorithm.

Algorithm 1 Temporal Archetypal Analysis
Require: Data: {X(n) ∈ Rdn×T }Nn=1. Parameters: λ, k, tol (tol-

erance)
1: Initialization: Initialize matrices {C(n)}Nn=1,S with random

values, set parameter values α, δ, ρC , ρS following [20].
2: for t = 0, 1, 2, ... do
3: for n = 1, 2, ..., N do
4: for m = 1 : 1 + αρC do
5: Update C(n)[t,m] from (9)
6: if ‖C(n)[t,m]−C(n)[t,m−1]‖F ≤ δ‖C(n)[t, 1]−

C(n)[t, 0]‖F then
7: break ;
8: end if
9: end for

10: C(n)[t+ 1]← C(n)[t,m]
11: Normalize columns of C(n)[t+ 1] to unit sum
12: end for
13: for l = 1 : 1 + αρS do
14: Update S[t, l] from (9)
15: if ‖S[t, l]− S[t, l− 1]‖F ≤ δ‖S[t, 1]− S[t, 0]‖F then
16: break ;
17: end if
18: end for
19: S[t+ 1]← S[t, l]
20: Normalize columns of S[t+ 1] to unit sum
21: e(n)[t+1] = ‖X(n) −X(n)C(n)[t+ 1]S[t+ 1]‖F /‖X(n)‖F
22: err[t+ 1] = maxn(e

(n)[t+ 1])
23: if |err[t+ 1]− err[t]| ≤ tol then
24: break;
25: end if
26: end for

B. Temporal Segmentation of High-Dimensional Time Series

Having found a common low-dimensional representation
for the data from different modalities, it can be used in
order to perform segmentation on the temporal sequence.
In more detail, matrix S is used to construct a graph G, with
a corresponding symmetric affinity matrix W calculated by:

wij =
zTi zj

‖zi‖2‖zj‖2
, (10)

where zi denotes the i-th column of matrix Z = STS. The
segmentation result is finally obtained by applying the Nor-
malized Cuts (Ncut) algorithm [24] on the aforementioned
graph.

III. EXPERIMENTAL EVALUATION

In order to evaluate the performance of the proposed
method we consider a temporal action segmentation sce-
nario. Given a video depicting a subject performing multiple
actions sequentially, the aim is to divide it into disjoint
segments, each of which containing the frames corresponding
to a single action. The proposed framework is evaluated in
both single modality and multimodal experiments involving
two or three modalities.

The performance of our method is compared against that
of various state-of-the-art methods:

• Subspace clustering methods: Sparse Subspace Cluster-
ing (SSC) [12], Low-Rank Representation (LRR) [13],



Fig. 1. Relative approximation error as a function of number of iterations for the proposed method applied on: (a) Weizmann, (b) Ballet, and (c) MAD
(Depth data) datasets.

TABLE I
TEMPORAL ACTION SEGMENTATION RESULTS FOR THE WEIZMANN AND

BALLET DATASETS (AVERAGE RATES)

Method Weizmann dataset Ballet dataset
ACC (%) NMI (%) ACC (%) NMI(%)

SSC [12] 32.386 55.8 42.969 41.8
LRR [13] 30.942 54.2 43.344 41.8
LSSC [25] 30.069 54 44.5 43
LRSC [26] 30.717 53.4 44.406 41.7
AA [9] 31.809 54.9 43.938 42.4
PAA [11] 29.202 52.6 44.656 44.5
RAA [10] 31.11 53.2 42.984 42
SMRS [5] 31.832 55.2 44.547 43.5
OSC [18] 39.868 65.7 44.813 43.2
TSC [17] 39.429 64.8 73.625 74
GNMF [27] 42.755 64.3 42.953 40.6
Proposed method 80.767 90 91.063 87.58

Least Squares Subspace Clustering (LSSC) [25], Low
Rank Subspace Clustering (LRSC) [26].

• Methods for extracting archetypes: Archetypal Anal-
ysis (AA) [9], Robust Archetypal Analysis (RAA)
[10], Probabilistic Archetypal Analysis (PAA) [11], and
Sparse Modeling Representative Selection (SMRS) [5].

• Temporal subspace learning methods: Temporal Sub-
space Clustering (TSC) [17], Ordered Subspace Clus-
tering (OSC) [18], and Graph-regularized Nonnegative
Matrix Factorization (GNMF) [27].

A. Datasets

For the purposes of our experiments, three different
databases where used, namely the Weizmann database [28],
the Ballet dataset [29],[30], and the Multimodal Action
Database [1]. The two first were used for single modality
segmentation, while the third one was used in multimodal
experiments.

• Weizmann database: the Weizmann database contains
video recordings of nine different subjects perform-
ing the following 10 actions: “run”, “walk”, “skip”,
jumping-jack” (or “jack”), “jump-forward-on-two-legs”
(or “jump”), “jump-in-place-on-two-legs”, “gallopside-
ways” (or “side”), “wave-two-hands (or “wave2”),
“wave-one-hand (or “wave1”), or “bend”. In total, the

database contains 90 videos (one video per subject
per action), of resolution 180x144 pixels. Along with
the video recordings, the binary masks of each frame
obtained after background subtraction are also provided.
Following [17], we extract a dictionary-based represen-
tation for every video frame. In more detail, a codebook
of 100 codewords is calculated from the binary masks,
by applying the k-means clustering algorithm. Subse-
quently, each frame in a video sequence is represented
by a binary (indicator) vector with a unique unit entry in
the index corresponding to the closest (in terms of Eu-
clidean distance) codeword. Since each video recording
of the Weizmann database depicts a single activity, in
order to construct sequences suitable for segmentation,
we concatenate multiple clips together. Following an
experimental setting similar to that used in [17], we
randomly select 5 sequences from each subject and
concatenate them into a long one. The aforementioned
procedure is repeated ten times, resulting in 10 long
sequences, consisting of 45 actions each.

• Ballet dataset: the ballet dataset contains 44 videos
collected from an instructional ballet DVD. Each frame
in the dataset is annotated with one of the eight action
labels: “left-to-right hand opening”, “right-to-left hand
opening”, “standing hand opening”, “leg swinging”,
“jumping”, “turning”, “hopping”, and “standing still”.
The aforementioned actions are performed by three
different subjects, two male and one female. It should be
noted that the label descriptions in this dataset are rather
general, meaning that strong variations exist within each
action class. For example, videos characterized by the
label ”standing hand opening” may contain significantly
diverse movements of the legs. Intra-class variations are
further induced by differences in execution style and
speed, by the subjects’ clothing (the female subject is
wearing a skirt), as well as by camera motion. For
the above reasons, temporal action segmentation on
the ballet data is much more challenging than on the
Weizmann dataset.
In order to apply temporal segmentation on the ballet
data, we follow a pre-processing procedure, similar to



Fig. 2. Visual representation of archetypes jointly extracted from RGB and depth modalities. The top three rows depict 15 frames of action ”jumping
jack” from the MAD dataset. In the fourth row archetypes extracted from the RGB modality are illustrated. In the last row archetypes extracted from the
depth modality are shown. Clearly, the extracted archetypes of each modality capture the same elementary motions of the action.

that used in [19]. Initially, the videos are rescaled to
50 × 50 and each frame is vectorized. Subsequently,
the frames from each video that belong to the same
action class, are grouped in image sets, consisting of 20
frames each. Successive image sets of the same video
are selected to have an overlap of 15 frames. As a
result, each action class is associated with a number
of image sets. By combining image sets from different
classes, longer sequences are constructed. Specifically,
we choose 4 image sets at random from each class
and concatenate them, such that the final sequence
is constructed as: X = [X1,X2, ...,X8]. Using this
procedure, 10 long sequences are obtained.

• Multimodal Action Database: this database contains
human activities recorded using a Microsoft Kinect
sensor in an indoor environment. The modalities include
RGB video, 3D depth video, and skeleton data (3D
coordinates of 20 joints for each frame). There are 20
subjects in total, performing 35 different actions sequen-
tially, and each subject performs the same sequence of
activities twice. For our experiments we randomly select
5 subjects and one trial from each of them.
The available modalities are combined in three different
ways: RGB + depth data, RGB + skeleton data, and
RGB + depth + skeleton data. RGB and depth video
frames are rescaled by a factor equal to 0.15, and sub-
sequently vectorized. Skeleton data are also vectorized.
When used in experiments with the baseline methods,

the different modalities are combined by feature con-
catenation, i.e. by concatenating the feature vectors from
each modality into a single vector. In the case of RGB
+ skeleton or RGB + depth + skeleton experiments,
and in order to obtain feature vectors of compatible
dimensions and magnitudes, we first perform PCA on
the RGB and depth data, retaining 100 components.
Subsequently, both the RGB and skeleton data values
are normalized in [0, 1].

B. Experimental results

After a representation has been learned with one of the
subspace methods, it is used to build an affinity matrix,
upon which the NCut clustering algorithm is applied. For
our method we follow the procedure presented in Section II-
B, while for the methods used for comparisons the affinity
matrices are constructed in the way reported in the original
papers (where applicable).

The number of clusters in the NCut algorithm is set equal
to the number of the individual action clips each sequence
comprises of, i.e., 45 for the Weizmann, 8 for the ballet, and
35 for the MAD dataset. As evaluation measures, clustering
accuracy (ACC) and normalized mutual information (NMI),
averaged on all the sequences, are employed [31].

The proposed method involves two parameters, the optimal
values of which have to be determined: the number of
archetypes k and the trade-off parameter λ. To this end, grid
search was performed and the values that yielded the highest



TABLE II
MULTIMODAL TEMPORAL ACTION SEGMENTATION RESULTS FOR THE MAD DATASET (AVERAGE RATES)

Method RGB + Depth RGB + Skeleton RGB + Depth + Skeleton
ACC (%) NMI (%) ACC (%) NMI (%) ACC (%) NMI (%)

SSC [12] 48.025 69.1 40.858 61 39.7 59.9
LRR [13] 38.355 58.2 38.988 59.2 36.878 54.5
LSSC [25] 38.136 58.3 38.509 59 36.11 54.9
LRSC [26] 37.82 56.4 39.922 59 37.33 53.7
AA [9] 35.972 53.1 35.522 53.3 34.258 50.6
PAA [11] 8.203 10.4 8.367 10.5 8.378 10.5
RAA [10] 37.345 57.9 38.843 58.8 35.353 53.8
SMRS [5] 37.614 56.9 38.288 58 35.629 54.2
OSC [18] 38.165 57.5 38.876 58.9 36.176 53.9
TSC [17] 55.347 74.7 71.331 85.64 75.484 86.8
GNMF [27] 28.212 45.6 27.71 41.9 25.889 37.5
Proposed method 70.467 84.5 73.111 86.4 74.742 86.5

clustering accuracy were selected. The optimal parameters
of the baseline methods were also determined through grid
search. In the case of GNMF, matrix L given in (3), was used
as the Laplacian matrix of the regularization term, encoding,
thus, the temporal information of the data.

In Table I, the results for the single modality temporal
segmentation experiments are presented. The first four rows
correspond to common subspace clustering method (SSC,
LRR, LRSC, LSSC), while the subsequent four display
the performance of algorithms which extract representatives
from the data (i.e., AA, PAA, RAA, SMRS). The afore-
mentioned methods do not make any assumptions about the
temporal nature of the data, therefore, a method which takes
temporal information into consideration, like the proposed
one, is expected to perform better. As can be observed, the
proposed method significantly outperforms these methods.
However, our method exhibits a better performance com-
pared to other subspace methods intended for temporal data,
such as TSC, OSC, and GNMF.

Similar results were obtained for the multimodal experi-
ments, as can be observed in Table II. In most cases the pro-
posed method performed considerably better than the base-
line methods, with the exception of RGB+depth+skeleton
data combination, where the TSC method achieved a higher
clustering accuracy. In order to examine the influence of
combining multiple modalities on the segmentation result,
we also performed experiments with the proposed method
for each modality individually. As can be observed from
Table III, the clustering accuracy is in most cases improved
when two or three modalities are combined. When RGB are
used along with depth data, a higher accuracy is obtained
as compared to using only RGB data, while no significant
improvement is observed when only depth data were used.
On the other hand, the combination of RGB with skeleton
data yields an improved performance in comparison to both
single modality experiments (RGB only and Skeleton only).
Finally, using all three modalities available further boosts
the segmentation performance. A visual representation of the
archetypes extracted using the RGB and depth modalities
from a ”jumping jack” action sequence of the MAD dataset
is illustrated in Fig. 2.

TABLE III
TEMPORAL ACTION SEGMENTATION RESULTS FOR THE PROPOSED

METHOD. SINGLE MODALITY EXPERIMENTS WITH THE MAD DATASET

RGB Depth Skeleton
ACC (%) NMI (%) ACC (%) NMI (%) ACC (%) NMI (%)

66.349 83.2 70.851 84.5 69.287 84.6

IV. CONCLUSIONS

In this paper we have investigated the problem of finding
temporal and modality invariant archetypes from multimodal
high-dimensional time series. The proposed method com-
bines two advantages, which render it efficient: first, it learns
representatives that are convex combinations of actual data
points, thus, characterizing the convex hull of the data.
Furthermore, it considers the temporal relationships between
successive observations, which leads to the extraction of
temporally invariant representations. The proposed method
was evaluated in a temporal action segmentation scenario
applied on three different datasets, where it outperformed
the compared state-of-the-art methods.
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