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Abstract—Prediction plays a key role in recent computational models of the brain and it has been suggested that the brain constantly
makes multisensory spatiotemporal predictions. Inspired by these findings we tackle the problem of audiovisual fusion from a new
perspective based on prediction. We train predictive models which model the spatiotemporal relationship between audio and visual
features by learning the audio-to-visual and visual-to-audio feature mapping for each class. Similarly, we train predictive models which
model the time evolution of audio and visual features by learning the past-to-future feature mapping for each class. In classification, all
the class-specific regression models produce a prediction of the expected audio / visual features and their prediction errors are
combined for each class. The set of class-specific regressors which best describes the audiovisual feature relationship, i.e., results in
the lowest prediction error, is chosen to label the input frame. We perform cross-database experiments, using the AMI, SAL and
MAHNOB databases, in order to classify laughter and speech and subject-independent experiments on the AVIC database in order to
classify laughter, hesitation and consent. In virtually all cases prediction-based audiovisual fusion consistently outperforms the two
most commonly used fusion approaches, decision-level and feature-level fusion.

Index Terms—Prediction-based Fusion, Audiovisual Fusion, Nonlinguistic Vocalisation Classification
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1 INTRODUCTION

AUDIOVISUAL fusion approaches have been successfully
applied to various problems like speech recognition

[1], [2], affect recognition [3], [4], laughter recognition [5],
[6], biometric systems [7] and meeting analysis [8]. Their
success lie in the redundant visual information not cor-
rupted by auditory noise, and to a lesser degree to the com-
plementary visual information, which is not present in the
auditory channel. Although various works on audiovisual
fusion have been recently presented, feature-level fusion
and decision-level fusion remain the two most common
types [7], [9].

In this work, we present a new audiovisual fusion ap-
proach, which is based on prediction, tackling the problem
from a different perspective. The proposed approach has
been inspired by recent computational models of the brain
[10], [11]. The memory-prediction framework [11] was of
particular interest to us since it emphasises the notion
of multisensory spatiotemporal predictions. Based on the
input from one sense, e.g., vision, the brain can make
predictions about future events in the same sense, as well
as current and future events in other senses, e.g., hearing.
This means that based on what we see (hear) now we can
predict what we expect to hear (see) now and see (hear) and
hear (see) in the future.

Similar findings have been reported in psychology and
cognitive science. It has been suggested in [12] that visual
information has a predictive role in processing audio infor-
mation. The audio signal and the mouth expression share
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common temporal properties [13] and this helps to reduce
temporal uncertainty related to the onset of syllables. In
other words, the mouth opening can be used to predict
the acoustic envelope of the speech, which in turn reduces
temporal uncertainty. This assumption has been experimen-
tally tested [14], [15] and demonstrated to be valid. In
[16], [17], it was shown that vision is used as a predictive
signal and certain facial movements are better predictors of
subsequently voiced speech than others.

Driven by those findings we propose a new audiovisual
fusion approach based on prediction, which has received
little attention so far. We explicitly model the spatiotemporal
relationship between audio and visual features using regres-
sors1 which learn the audio-to-visual and visual-to-audio
feature mapping for each class. This set of regressors learn
to predict the audio features from the visual features and
vice versa and constitute the cross-modal prediction fusion
module as shown in Fig. 1. Similarly, we model the temporal
evolution of the audio and visual features using regressors
which learn the relationship between past and future values
for the audio and visual features, respectively, for each class
separetely. These regressors learn to predict the current au-
dio and visual features from their past values and constitute
the intra-modal prediction fusion module as shown in Fig. 1.

In classification, each regressor produces a prediction
error which is combined with the prediction errors of the
other regressors from the same class in a hierarchical way
as shown in Fig. 1. By selecting the model that produces the
lowest prediction error, i.e., that best describes the audiovi-
sual feature relationship, the presented input can be labelled
accordingly. It is expected that the models corresponding
to the actual class will produce a better prediction than

1. The terms regressor, predictor and predictive model are used
interchangeably in this paper.
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all other models, since they have learnt the audiovisual
relationship for that class. It does not matter if the absolute
value of the prediction error is high or low, what really
matters is the ranking of the errors. As long as the correct
model produces the lowest error, the input example is
correctly classified.

This study is an extension of our previous works [18],
[19], [20], where we compared cross-modal prediction fusion
with feature-level fusion for laughter-vs-speech discrimina-
tion. Here, we provide an extensive comparison of cross-
modal prediction fusion, intra-modal prediction fusion, and
their combination, with feature-level fusion, decision-level
fusion, and their combination on two different problems
laughter-vs-speech discrimination and classification of var-
ious nonlinguistic vocalisations2. We also compare the per-
formance of various fusion approaches across different au-
dio noise levels and provide some insight into the advan-
tages of prediction-based fusion.

We have chosen nonlinguistic vocalisations as the target
application since they are audiovisual in nature. Previ-
ous works have successfully used both decision-level and
feature-level fusion to discriminate between laughter and
speech [5], [6], [22], [23] and nonlinguistic vocalisations [24].
In all cases audiovisual fusion achieved higher classification
performance over audio-only classifiers indicating that vi-
sual information is beneficial for such tasks.

We use the AMI, SAL and MAHNOB databases to dis-
criminate laughter from speech. We conduct cross-database
experiments which pose a significant challenge due to the
different recording conditions. Prediction-based fusion out-
performs the standard fusion methods in virtually all cases.
It results in a 4% and 5.4% increase in the mean F1 over
all classes on the AMI and MAHNOB datasets, respec-
tively. We also use the AVIC database in order to classify
laughter, consent, hesitation and other human noises. In
this case prediction-based fusion leads to an 8.3% increase
in the mean F1 over all classes. We also repeat the same
experiments while adding audio noise to the test sets.
Again, prediction-based fusion outperforms decision-level
and feature-level fusion in almost all noise levels.

Section 2 provides an overview of related works and
Section 3 describes the proposed prediction-based fusion
approach. In Sections 5 and 4 we present the databases
and the audio and visual features, respectively. Section 6
describes the experimental setup and results are presented
in Sections 7 and 8. Finally, Section 9 provides insight why
the proposed fusion approach outperforms the standard
fusion approaches and this is followed by Section 10 which
concludes the paper.

2 RELATED WORK

2.1 Audiovisual fusion

Multiple audiovisual fusion approaches have been pro-
posed in the literature and have been applied to a variety of
applications. In this section, we present the most popular fu-
sion approaches: feature-level, classifier-level and decision-

2. According to Scherer [21] nonlinguistic vocalizations (or nonverbal
vocalizations) are very brief, discrete, nonverbal expressions of affect in
both face and voice, like laughter, sigh, hesitation etc.
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Fig. 1: Overview of the proposed prediction-based fusion.
The first layer consists of the cross-modal prediction mod-
ule, which models the relationships between audio and
visual features, and the intra-modal prediction module,
which models the temporal evolution of the audio and
visual features separately. In the second layer the prediction
errors of the two modules are combined. All four predictors
are trained for each class separately. A sequence is classified
based on the class-specific model which produces the lowest
prediction error, i.e., best explains the audiovisual feature re-
lationship. This example corresponds to a two-class problem
and that is why there are two error curves in each module.

level fusion. A full review of existing audiovisual fusion
approaches and applications can be found in [7], [9].

2.1.1 Feature-Level Fusion (FF)
The extracted audio and visual features are combined, usu-
ally by concatenation, and then fed to a classifier. Processing
all features increases the dimensionality of the problem and
makes the problem more complex since it requires a large
amount of training data. One constraint of this approach is
that once the classifier has been trained the relative weights
of each stream cannot change as they are determined in-
ternally by the classifier. The main advantage of this type
of fusion is that it takes into account the spatiotemporal
relationship between the audio and visual features, i.e., the
co-evolution of the audiovisual features over time.

2.1.2 Classifier-Level Fusion (CF)
This type of fusion lies between feature-level and decision-
level fusion. The audio and visual features are processed in-
dependently and fusion takes place in the classifier. Hence,
this approach cannot be used with any classifier but only
with specific types like Hidden Markov Models (HMMs)
and Dynamic Bayesian Networks. Two of the most com-
monly used architectures in audiovisual speech recognition
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are the coupled HMMs [25] and multistream HMMs [1]. In
the former case, two HMMs are used, one for the audio
stream and one for the visual stream, which are coupled
such that the next state in both streams depends on the
current state of the audio and visual stream. In the latter
case, two independent HMMs are used in parallel and their
likelihoods are combined in pre-defined synchronisation
points. Another variant is the multistream fused HMMs
proposed in [26] for affect recognition. One HMM is created
for the audio and visual streams and the hidden states are
connected using the maximum mutual information crite-
rion.

Since this fusion method is not generally applicable to
any classifier but requires specific classifier architectures, we
do not consider it further in this work. A review about other
classifier-level fusion approaches can be found in [3] [27].

2.1.3 Decision Level Fusion (DF)
In this type of fusion the audio and video modalities are
processed independently and they are combined at a higher
level using various integration rules like the weighted sum.
As a consequence the correlation between the audio and vi-
sual features is not taken into account. This fusion type does
not increase the dimensionality, but comes at the expense of
requiring multiple classifiers to be trained. It also allows for
separate weighting of the different streams based on their
reliability and the relative importance of the streams can be
easily changed, by adjusting the weights, once the classifiers
are trained.

2.2 Prediction-based Approaches
In this section we review the most relevant works based on
prediction. In order to be consistent with our approach we
divide the works into those which predict ahead in time and
those which make cross-modal predictions.

2.2.1 Prediction ahead in time
Predictive models which predict ahead in time have been
mainly used for time series classification [28], [29] and to a
lesser degree for time series segmentation [30]. The standard
approach is that a predictive model per class is trained,
usually either a feedforward or a recurrent neural network,
which learns to predict the signal/feature values at the next
time step. Classification is performed based on the model
that produces the lowest prediction error similar to this
work’s approach.

The most common application for prediction-based
approaches is gesture recognition. The prediction-error-
classification approach [31], [32] has been proposed which
builds predictive models based either on neuro-fuzzy pre-
dictors or continuous-time recurrent neural networks. These
models learn to predict the acceleration values in the X,
Y and Z axes in the next time step for eight different
gestures. Classification is performed based on the model
which produces the lowest prediction error over an entire
gesture. A similar approach has been followed in [33]. A
recurrent fuzzy network models the time evolution of the
2D coordinates on the image plane for each of the ten
gestures considered and classification is performed based
again on the lowest prediction error principle.

A variant of the above approach for object classification
has been presented in [34] where only one recurrent neural
network is used to model all time series. This work assumes
that the time series are periodic and therefore they can be
extended so they all have the same length. The use of a
single model is possible because the context units, i.e., neu-
rons that receive input from the feedback connections, are
set to different initial values for each class. This means that
instead of feeding a time series to all models, as described
above, it is fed several times to the same model, where each
time class-specific values for the context units are used.

In all the above approaches, the predictive models learn
the evolution of raw signals, i.e., no features are extracted.
The same prediction-based approach has been used in [35]
where recurrent neural fuzzy networks model the time
evolution of linear predictive coefficients extracted from the
audio signal of birdsongs. In this case the task is birdsong
classification, but classification is performed in exactly the
same way.

Another application of the prediction-based approach
has been feature extraction [36]. Feedforward neural net-
works are trained, using a window of past values, to
perform one-step-ahead predictions for EEG time series.
The mean squared errors, over a window of the predicted
values, of all the models are used as features for linear
discriminant analysis.

It is obvious that in all the previous approaches pre-
diction is performed in one stream only and audiovisual
fusion has not been attempted. The main difference with
our approach is that we create predictive models for the
audio and visual streams and fusion occurs through the
combination of their prediction errors.

2.2.2 Cross-modal Prediction

Predictive models which make cross-modal predictions
have been mainly used to examine the relationship between
acoustic and visual speech features. Most of the studies are
focused only on the audio-to-visual feature mapping. Linear
predictors are commonly used to predict the visual features,
usually facial points [37], [38] or distances between the
facial points [39], [40], based on the audio features, usually
line spectrum pairs [37], [38], [39], [40] or linear predictive
coefficients [39], [40]. A correlation coefficient of about
0.70 between the predicted and actual visual features is
reported in almost all studies, which increases to 0.85 when
non-linear predictors are used like neural networks [37].
Similar conclusions have been drawn also for emotional
speech where correlation values of over 0.80 have been
reported when a linear predictor is used to estimate facial
points based on Mel Frequency Cepstral Coefficients [41]. It
should be noted that all studies report results in a subject-
dependent way, i.e., each predictor is tested on the same
subject that has been trained on. As expected the correlation
is weaker for subject-independent experiments [39].

There are also a few works which attempt to predict
the audio features based on the visual features. The results
are not as consistent in this case as in the audio-to-visual
mapping. A correlation coefficient of 0.55 is reported in [40]
whereas a correlation coefficient of 0.73 is reported in [38]
using linear predictors.
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Cross-modal prediction models have also been widely
used in speech driven facial animation. In this case, the
audio features, usually MFCCs [42], [43], are used as input
to a non-linear predictor, usually a neural network [42],
[43], [44]. The goal is to predict the visual features which in
turn control the generated facial animations. The correlation
coefficients reported vary significantly, from 0.64 [42], [45] to
0.96 [43], but this depends on the visual features used, which
can simply be control parameters of the animated face [42].

Finally, to the best of our knowledge the only hybrid
approach that combines intra-modal prediction with cross-
modal prediction is presented in [46]. It is an interesting
approach but it is used for synchrony detection in speech
and not for audiovisual fusion and it makes no use of the
prediction error. The time evolution of the audio features is
modelled based on the assumption that the current audio
features can be linearly predicted using past audio and
visual features and the present visual features. It is expected
that the visual features can be used to predict the audio
features when they are synchronised, and therefore their
correlation is higher, but not when they are asynchronous.

Based on the findings presented above it is obvious that
there is a significant correlation between audio and visual
features in speech. To the best of our knowledge there is
no work which performs a similar correlation analysis for
laughter and other nonlinguistic vocalisations. The closest
work is [47] which attempts to produce facial animations
based on the sound of laughing, crying, sneezing and yawn-
ing but without providing any correlation analysis. It is
reasonable to assume that a correlation exists between audio
and visual features in nonlinguistic vocalisations, although
this may be weaker than in speech. Consequently, it makes
sense to model audiovisual behaviour by models which
predict the audio features from the visual features and vice
versa. Yet, none of the prediction-based approaches have
been used either for classification or fusion of audiovisual
time series, as we propose in this work.

3 PREDICTION-BASED FUSION

The prediction-based fusion framework consists of two
components as shown in Fig. 1. The first is the cross-modal
prediction component, which combines the audio and vi-
sual features by modelling the spatiotemporal relationship
between them. This component corresponds to feature-level
fusion where the concatenation of audio and visual features
is replaced by two predictors which learn the mapping
between audio and visual features and vice versa for each
class separately.

The second one is the intra-modal prediction compo-
nent which models the temporal evolution of the audio
and visual features separately. This component corresponds
to decision-level fusion where each audio/visual stream
is modelled by two predictors which learn the mapping
between past and current audio or visual features for each
class separately.

Finally, these two components are combined in a hier-
archical fashion. In the first level, the two predictors of the
cross-modal prediction component are combined in order to
take into account the bidirectional relationship between au-
dio and visual features. Similarly, the two predictors of the

intra-modal prediction component are combined in order to
merge the information about the temporal evolution of the
audio and visual streams. In the second layer, the intra- and
cross-modal prediction components are combined in order
to benefit from both the audiovisual feature relationship and
their temporal evolution. This corresponds to the combina-
tion of feature-level and decision-level fusion.

It is important to point out that all predictors are class-
specific, since they learn the audiovisual features relation-
ships for each class separately. This means that if there are
C classes the number of predictors that should be trained
is 4 × C. The key idea is that the class-specific predictors
which correspond to the true class of a new input sequence
will produce a better estimation of the audio/visual features
than models corresponding to other classes, since they have
been trained on the audiovisual features of the target class.

In the first set of predictors, which make predictions
across modalities, the relationship between the audio (Ac)
and visual (V c) features of class c is modelled by two
regressors, f c

A→V and f c
V→A, respectively. The first (second)

predictor takes as input the audio (visual) features and
predicts the corresponding visual (audio) features at the
same frame t as shown in the following equations:

f c
A→V (A

c[t− kcAV, t]) = V̂ c
A→V [t] ≈ V c[t] (1)

f c
V→A(V

c[t− kcVA, t]) = Âc
V→A[t] ≈ Ac[t] (2)

In eq. 1 and 2, the size of the windows kcAV and kcV A

depends on the mapping type and the modelled class. Note
that the feature values at frame t are used as well in order to
predict the feature values in the other modality at the same
frame t.

In the second set of predictors, which make predictions
within each modality, the relationship between past and
future audio and visual features in each class c is modelled
by two regressors f c

A→A and f c
V→V . The first (second)

predictor takes as input the past audio (visual) features and
predicts the corresponding audio (visual) features at frame
t as follows:

f c
A→A(A

c[t− kcAA, t− 1]) = Âc
A→A[t] ≈ Ac[t] (3)

f c
V→V (V

c[t− kcVV, t− 1]) = V̂ c
V→V [t] ≈ V c[t] (4)

In eq. 3 and 4, the size of the windows kcAA and kcV V

depends on the mapping type and the modelled class. In
this case the feature values at frame t are excluded since
that is what we want to predict.

Once training is complete and the predictors f c are
learnt, they can be used for classification. When a new
sequence is available, the audio and visual features are
computed, which are fed to all predictors defined by eq.
1 - 4 resulting in 4 prediction errors per frame for each
class c. The prediction error measures we considered are the
mean squared error (MSE), the mean absolute error (MAE)
and the L2 norm of the error (L2-E). The total error for
each predictor is computed by summing the errors across
all frames, N , resulting in 4 prediction errors per sequence
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for each class. The errors for the 4 predictors of class c are
computed using eq. 5 to 8.

ecA→V =
N∑
i=1

Err(V̂ c
A→V [i], V [i]) (5)

ecV→A =
N∑
i=1

Err(Âc
V→A[i], A[i]) (6)

ecA→A =
N∑
i=1

Err(Âc
A→A[i], A[i]) (7)

ecV→V =
N∑
i=1

Err(V̂ c
V→V [i], V [i]) (8)

where Err is either the MSE or MAE or L2-E. Then the
two cross-modal prediction models (eq. 5, 6) are combined
in order to take into account the bidirectional relationship
of audio and visual features as shown in eq. 9 subject to
constraint in eq. 10.

ecCP = wc
AV × ecA→V + wc

VA × ecV→A (9)

wc
AV + wc

VA = 1 (10)

where ecCP is the total cross-modal prediction error and
wc

AV and wc
V A are the weights of the cross-modal prediction

components.
Similarly, the two temporal evolution models (eq. 7, eq.

8) are combined in order to take into account past-to-future
relationship between audio and visual features as shown in
eq. 11 subject to constraint in eq. 12.

ecIP = wc
AA × ecA→A + wc

VV × ecV→V (11)

wc
AA + wc

VV = 1 (12)

where ecIP is the total intra-modal prediction error and
wc

AA and wc
V V are the weights of the intra-model prediction

components.
Finally, the prediction errors of the two components are

combined as shown in eq. 13, subject to constraint in eq.
14, in order to merge information from the two prediction-
based models.

ec = wc
CP × ecCP + wc

IP × ecIP (13)

wc
CP + wc

IP = 1 (14)

where ec is the total prediction error and wc
CP and wc

IP

are the weights for the cross-modal prediction and intra-
model prediction fusion components, respectively. We have
opted for combining the sub-systems in a hierarchical way
since it allows for easier optimisation of the weights.

In eq. 9, 11, 13, the prediction errors are combined with-
out being normalised first. It is expected that the errors will

be in different scales since the predictors model different
relationships. As a consequence, the weights indicate the
relative importance of each predictor and act as scaling
factors as well.

An alternative approach is to convert the prediction
errors in the same scale by means of softmax normalisation.
All errors in eq. 9, 11, 13 are normalised using the softmax
function so their sum is equal to one. In this case, the
weights simply indicate the relative importance of each pre-
dictor. In all the experiments conducted in this study, both
softmax normalisation and no normalisation are considered.

In the final step, a label is assigned to the input sequence
based on the C errors (eq. 13). This is done by selecting the
label which corresponds to the lowest error. In other words,
the class-specific model that best explains the audiovisual
feature relationship, i.e., leads to the lowest prediction error,
labels the new sequence accordingly, as shown in eq. 15.

PredictedClass = argmin
c=1...C

ec (15)

In case we wish to perform classification using either
cross-modal prediction fusion or intra-modal prediction
fusion only, this can be achieved by replacing the total
prediction error ec in eq. 15 with either the cross-modal
prediction error ecCP or the intra-modal prediction error ecIP
from eq. 9 and 11, respectively.

4 FEATURES

4.1 Audio Features

Cepstral features, such as Mel Frequency Cepstral Coeffi-
cients (MFCCs), have been widely used in speech recogni-
tion [1], [2] and have also been successfully used for laugh-
ter detection [48] and laughter-vs-speech discrimination [5].
In addition, it has been shown that cepstral coefficients are
more correlated to visual features than prosodic features
[41]. Therefore we only use MFCCs for our experiments
which were computed using the functions provided in [49].

The use of 13 MFCC coefficients is common in speech
recognition, however, using 6 coefficients has been reported
to lead to either the same or an improved performance in
laughter detection [48] and language identification [50]. The
same conclusion has been confirmed in one of our previous
study where the performance of different number of coeffi-
cients was investigated through cross-validation in the AMI
dataset [51]. Hence, we use 6 MFCCs which are computed
every 10 ms over a 40 ms long frame, i.e. the frame rate
is 100 fps. In addition, the ∆MFCCs are calculated as well
since they capture local temporal characteristics. So in total,
12 audio features are computed.

4.2 Visual Features

To capture face movements in an input video, we track
20 facial points, as shown in Fig. 2. These points are the
corners/ extremities of the eyebrows (2 points on each
eyebrow), the eyes (4 points on each eye), the nose (3 points),
the mouth (4 points), and the chin (1 point). To track these
facial points we used the particle filtering tracking scheme
proposed in [52], applied to tracking color-based templates
centered around the facial points to be tracked. Hence, for
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(a) 324 (b) 333 (c) 346

Fig. 2: Example of tracking a laughter episode from the
MAHNOB database, Session S007-002, frames 324 to 346.

TABLE 1: Description of the four datasets used in this study.
The frame rate in frames per second (fps), resolution and
sample rate in kHz are shown next to each database.

AMI (25 fps, 720 x 576, 16 kHz)
Type No. Episodes / Total Duration Mean / Std

No. Subjects (sec) (sec)
Laughter 124 / 10 145.36 1.17 / 0.73
Speech 154 / 10 285.92 1.86 / 1.12

SAL (25 fps, 720 x 576, 48 kHz)
Laughter 94 / 15 136.96 1.46 / 0.78
Speech 177 / 15 377.32 2.13 / 0.80

MAHNOB (25 fps, 720 x 576, 48 kHz)
Laughter 554 / 22 863.68 1.56 / 2.21
Speech 845 / 22 2430.92 2.88 / 2.28

AVIC (25 fps, 720 x 576, 44.1 kHz)
Laughter 267 / 21 110.44 0.41 / 0.30

Hesitation 1136 / 21 356.96 0.31 / 0.16
Consent 308 / 18 80.88 0.26 / 0.11
Garbage 582 / 21 134.72 0.23 / 0.15

each episode containing K video frames, we obtain a K×40
matrix which contains the x and y coordinates of the 20
points in each frame.

We wish to decouple rigid head movements from non-
rigid movements, i.e., facial expressions, since we are mostly
interested in the latter. To do so, we use a similar approach
to the one proposed by Gonzalez-Jimenez and Alba-Castro
[53]. Using a Point Distribution Model (PDM), by applying
principal component analysis to the matrix containing the
point coordinates from the training frames, head move-
ment can be decoupled from facial expression. The facial
expression movements are encoded by the projection of the
tracking points coordinates to the N principal components
(PCs) of the PDM which correspond to facial expressions. In
this study we build a PDM based on the SAL training set, so
our shape features are the projection of the 20 points to the
3 PCs which were found to correspond to facial expressions
(PCs 5 to 7) [5]. Similarly, another PDM is built using the
training set of AVIC using PCs 5 to 10, which correspond
to facial expressions. These 3 and 6 visual features, are
extracted at the video frame rate, i.e., 25 fps.

5 DATABASES

For the purpose of this study we use four databases corre-
sponding to 4 different scenarios as described below. Details
of the examples used in this study are given in Table 1.

Augmented Multi-party Interaction (AMI) corpus [54]:
The AMI meeting corpus is a multi-modal database con-
sisting of 100 hours of meeting recordings. In each meeting
there are four participants which interact with each other.
All meetings are held in English, although most of the
subjects are non-native English speakers.

We use the same set of speech and laughter episodes
used in [5] which can be found in [55]. Each participant is
recorded by one camera positioned at a fixed location on
the meeting table. Since subjects participate in a meeting
they are rarely in a frontal pose. Audio for each participant
is captured by a headset microphone and background noise
is present from the other subjects.

Sensitive Artificial Listener (SAL) [56]: In this corpus
subjects interact with 4 agents, which have different
personalities and they are controlled by a human operator.
The aim is to evoke emotionally coloured reactions from
the users whose reactions are recorded by a camera and a
microphone.

We use the same set of speech and laughter episodes
used in [5] (see [55]) and most subjects are native English
speakers. We use the close-up video recordings of the sub-
jects and the related audio recording. Most of the time the
subjects have frontal pose, head movements are small and
audio noise is low. An example of a laughter episode is
shown in Fig. 3.

MAHNOB Laughter Database [57], [58]: In the MAH-
NOB laughter database funny video clips were shown to
subjects and their reactions were recorded by two micro-
phones, and a video camera. The subjects were also asked
to speak about a topic of their choice in English and in their
mother language.

We use the same set of speech and laughter examples as
in [58] which can be found in [59], and most subjects are
non-native English speakers. Each subject is recorded by a
fixed camera and since subjects watch video clips they are
mostly in frontal position and head movements are small
except during intense laughter. The camera microphone
audio is only considered since it is poses a more challenging
problem as explained in [58]. An example laughter episode
is shown in Fig. 4.

AudioVisual Interest Corpus (AVIC) [60]: The AVIC
corpus is an audiovisual dataset containing scenario-based
dyadic interactions. A subject is interacting with an experi-
menter who plays the role of a product presenter and leads
the subject through a commercial presentation. The subjects
role is to listen to the presentation and interact with the
experimenter depending on his/her interest on the product.

Annotations for laughter, hesitation, consent and other
human noises, which are grouped into one class called
garbage, are provided with the database and those are used
in this study. Similarly to previous works [24], [60], [61] vo-
calisations that were very short (≤ 120ms) were excluded.

A video camera was used to record the subject’s reaction,
positioned in front of him/her and the audio signal was
recorded by a lapel microphone. The audio noise is low,
head movement is moderate and most of the time subjects
have frontal pose. Examples of laughter and hesitation are
shown in Fig. 5 and 6, respectively.
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(a) 1449 (b) 1454 (c) 1464 (d) 1475

Fig. 3: Example of laughter from the SAL database (GHill-
Sect3), frames 1449 to 1475.

(a) 2104 (b) 2123 (c) 2163 (d) 2202

Fig. 4: Example of laughter from the MAHNOB database,
Session S023-002, frames 2104 to 2202.

(a) 6532 (b) 6539 (c) 6555 (d) 6569

Fig. 5: Example of laughter from the AVIC corpus, Subject
VP4, frames 6532 to 6569.

(a) 15476 (b) 15479 (c) 15489 (d) 15497

Fig. 6: Example of hesitation from the AVIC corpus, Subject
VP8, frames 15476 to 15497.

6 EXPERIMENTAL SETUP

6.1 Decision-level and Feature-level Fusion
In this section we briefly present the two most common
fusion types, decision-level and feature-level fusion, which
are compared with the prediction-based fusion approach.

Decision-level Fusion: In this type of fusion, one classifier
is trained with the audio features and one with the visual
features. In both cases, a window of past audio, kA, or visual
features, kV , is fed to the classifiers which produce for each
class, c = 1...C , a score per frame, scA or scV . The class scores
of the audio and visual systems are combined as shown in
eq. 16 subject to constraint eq. 17.

scDF = wA × scA + wV × scV (16)

wA + wV = 1 (17)

where wA and wV are the weights of the audio and
visual classifiers, respectively.

Feature-level Fusion: In this type of fusion, the audio
and visual features are first concatenated and then a single
classifier is trained. A window of past audiovisual features,
kFF , is fed to the classifier which produces a score for each
class c and each frame, scFF .

Feature-level + Decision-level Fusion: As shown in Fig. 1
the cross-modal prediction and intra-modal prediction com-
ponents are combined hierarchically in order to merge the
different types of information they encode. In the same way,
decision-level and feature-level fusion can also be combined
hierarchically. This is achieved by combining their outputs
as shown in eq. 18 subject to constraint eq. 19.

scFF+DF = wFF × scFF + wDF × scDF (18)

wFF + wDF = 1 (19)

where wFF and wDF are the weights for the feature-level
and decision-level fusion systems.

In all the above cases, the total score per class over a
sequence can be computed by summing the scores across
all frames. Finally, a sequence is labelled based on the class
with the highest score.

6.2 Preprocessing

As mentioned in section 4 the audio and visual features
are extracted at different frame rates. Therefore they need
to be synchronised. This is achieved by upsampling the
visual features, to match the frame rate of the audio features
(100fps), by linear interpolation similarly to [2]. In addition,
since the recording conditions are different in each database,
the features need to be normalised in order to remove
(to some extent) the recording and subject variability. In
order to do this, we follow the common approach in cross-
database experiments [62], [63] where all audio and visual
features are z-normalised per subject, to a zero mean and
unity standard deviation.

Finally, the datasets are imbalanced as shown in Table
1 and this can significantly degrade the performance of
discriminative classifiers [64]. Therefore, the training set
is balanced by random downsampling when feature-level
or decision-level fusion is used. In prediction-based fusion
this is not required since each predictor is trained with
examples from one class only.

6.3 Training

Feedforward neural networks (NNs) with one hidden layer,
using sigmoid activation functions, are used as classifiers
in feature-level or decision-level fusion and as predictors in
prediction-based fusion. In the former case the output layer
consists of sigmoid activation functions and in the latter case
of linear activation functions. Each network is trained using
the resilient backpropagation algorithm [65] with an epoch
limit of 1000 and early stopping to avoid overfitting.

The NNs weights are initialised randomly and this can
lead to slightly different performance each time a network
is trained. This in combination with the random down-
sampling approach for balancing used in feature-level and
decision-level fusion may lead to variable performance.
In order to account for that randomness 30 networks are
trained for each experiment and the mean performance and
standard deviation are reported.
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6.4 Parameter Optimisation
Prediction-based Fusion: The first step is the optimisation of
the number of hidden neurons in NNs and the window
lengths from eq. 1 to 4. The number of hidden neurons
varies between 5 and 60 neurons. The window lengths range
is from 0ms to 120ms, which is the length of the shortest
vocalisation, in steps of 10ms. The combination of window
length and number of hidden neurons that leads to the
lowest prediction error (either MSE or MAE or L2 − E)
over all sequences in the validation set is selected as the
optimal one. It should be noted that the parameters of each
network/predictor are optimised independently of the other
networks.

The next step is the optimisation of the weights which
is done hierarchically. In the first layer the weights of the
cross-modal prediction module, wc

AV and wc
V A, and intra-

modal prediction module, wc
V V and wc

AA, are optimised
independently of each other. For each module a line search
is performed between 0 to 1 in steps of 0.05 and classification
is based either on eq. 9 or eq. 11. The weight combination in
each module resulting in the best mean F1 measure over all
classes on the validation set is selected as the optimal.

In the second layer, the weights that combine the cross-
modal prediction, wc

CP , and intra-modal prediction, wc
IP ,

modules from eq. 13 are optimised. This is done in exactly
the same way as in the first layer. The only difference is
that the performance of the overall system is considered,
i.e., classification is performed using eq. 13 and 15.

Decision-level Fusion: The only parameters that need to
be optimised are the number of hidden neurons and the
window lengths, kA and kV , of the audio and visual clas-
sifiers, respectively. This is done in the same way as for
the prediction-based fusion. The only difference is that the
optimal combination is the one which maximises the mean
F1 measure over all classes on the validation set. Weights,
wA and wV from eq. 16, are also optimised in the same way
as the first layer weights in prediction-based fusion.

Feature-Level Fusion: In this case, the only parameters
to be optimised are the number of hidden neurons and
the window length, kFF . This is done in the same way as
described above for the audio and video classifiers.

Feature-level + Decision-level Fusion: The only parameters
that need optimisation are the weights wFF and wDF from
eq. 18. This is performed in the same way as for the second
layer weights in prediction-based fusion.

6.5 Performance Measures
The performance measures used are the F1 measure, the
classification rate (CR) and the unweighted average recall
(UAR), which is simply the average of all recall rates per
class. The use of F1 measure and UAR provide a more
objective view of the performance over the CR which can
be affected by imbalanced datasets.

In order to test the statistical significance of the results
we use the randomization test [66] which has been shown
to perform similarly to the commonly used T-test, when the
normality assumption is met, but outperforms it when it is
not met. In the following sections, whenever two methods
are compared in terms of performance, a randomisation
test is run. So unless mentioned otherwise, whenever

TABLE 2: Optimal weights for prediction-based fusion,
feature-level fusion and decision-level fusion. All parame-
ters were optimised on 5 subjects from the SAL dataset.

Prediction-Based Fusion Prediction-Based Fusion
Softmax Normalisation No Normalisation

[wL
V A,wL

AV ] [0.80 0.20] [wL
V A,wL

AV ] [0.90 0.10]
[wL

V V ,wL
AA] [0 1] [wL

V V ,wL
AA] [0.10 0.90]

[wS
V A,wS

AV ] [1 0 ] [wS
V A,wS

AV ] [0.85 0.15]
[wS

V V ,wS
AA] [0 1] [wS

V V ,wS
AA] [ 0 1]

[wL
CP ,wL

IP ] [0.55 0.45] [wL
CP ,wL

IP ] [0.30 0.70]
[wS

CP ,wS
IP ] [0.65 0.35] [wS

CP ,wS
IP ] [0.30 0.70]

Decision-Level Fusion Decision-Level Fusion +
Feature-Level Fusion

[wA, wV ] [0.90 0.10] [wFF , wDF ] [0.05 0.95]

one method performs better, this difference is statistically
significant.

7 EXPERIMENTAL STUDIES

In order to compare the performance of prediction-based
fusion with feature-level and decision-level fusion two sets
of experiments are conducted. In all approaches, exactly the
same audio/visual features are used, and the same clas-
sification protocol is followed. The only difference is how
classification is performed, either via prediction or by using
the standard feature-level and/or decision-level fusion.

7.1 Laughter-vs-Speech Discrimination
In this experiment, we use the SAL, AMI and MAHNOB
databases in order to discriminate laughter from speech. The
first 10 subjects of the SAL dataset are used for training,
the last 5 subjects of SAL are used as a validation set and
the AMI and MAHNOB datasets are used for testing. This
cross-database setup presents a more challenging task since
each database has different characteristics and the trained
models and the optimal parameters found on one database
will most likely be sub-optimal when tested on different
databases.

The optimal weights are shown in Table 2. It is obvi-
ous that the video-to-audio and audio-to-audio prediction
systems are heavily favoured for both classes and for both
normalisation schemes with weights varying from 0.80 to 1.
In case of decision-level fusion the audio classifier is heavily
favoured.

Regarding the second layer weights, the cross-modal
prediction module is favoured for both classes when soft-
max normalisation of the errors is used. In other words,
the cross-modal prediction module is more important when
the errors are in the same scale. On the other hand, the
intra-modal prediction weights are higher when no error
normalisation is applied. As explained in section 3 the
weights in this case encode both relative importance and
scaling information. Hence, this means that the cross-modal
prediction errors are higher than the intra-modal prediction
errors and a smaller weight is needed in order to convert
them to the same scale as the intra-modal prediction errors.

Table 3 shows the performance of the different
approaches on the AMI and MAHNOB datasets. On the
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TABLE 3: F1, Unweighted Average Recall (UAR) and Classification Rates (CR) for the Audio-only classifier (A), Video-only
classifier (V), Feature-level Fusion (F F), Decision-level Fusion (D F), the combination of DF and FF, Cross-modal Prediction
fusion (C P), Intra-modal Prediction Fusion (I P) and the full prediction-based system with no normalisation (P F - N) and
softmax normalisation (P F - S). The AMI and MAHNOB datasets are used as test sets. The mean and (St. Dev.) over 30
experiments are presented. The two highest mean values in each column are given in bold. † denotes that the difference
between the prediction-based approaches and D F + F F is statistically significant.

Classification F1 F1 F1 CR UAR F1 F1 F1 CR UAR

System Laughter Speech Mean Laughter Speech Mean

Test → AMI MAHNOB

A 73.7 (3.4) 85.3 (1.4) 79.5 (2.4) 81.1 (2.0) 79.0 (2.2) 76.2 (3.3) 88.2 (1.1) 82.2 (2.2) 84.2 (1.7) 80.8 (2.2)

V 58.5 (5.2) 76.1 (1.0) 67.3 (2.8) 69.8 (1.7) 67.7 (2.2) 55.0 (5.6) 78.0 (1.0) 66.5 (3.0) 70.5 (1.8) 66.3 (2.9)

A + V (D F) 73.3 (3.2) 85.2 (1.3) 79.2 (2.3) 81.0 (1.9) 78.8 (2.1) 76.5 (3.4) 88.4 (1.2) 82.4 (2.3) 84.5 (1.8) 81.0 (2.3)

A + V (F F) 67.8 (2.8) 82.1 (1.1) 75.0 (1.9) 77.0 (1.6) 74.8 (1.7) 61.8 (2.5) 82.0 (0.7) 72.0 (1.5) 75.6 (1.1) 71.2 (1.4)

A + V (D F + F F) 73.5 (2.9) 85.4 (1.1) 79.5 (2.0) 81.2 (1.7) 79.0 (1.8) 76.5 (3.2) 88.4 (1.1) 82.5 (2.1) 84.5 (1.7) 81.0 (2.1)

A + V (C P - S) 76.6 (2.3)† 85.7 (1.0)† 81.2 (1.6)† 82.3 (1.4) 80.6 (1.5)† 81.7 (1.3)† 89.0 (0.6) 85.4 (1.0)† 86.3 (0.8)† 84.7 (1.1)†

A + V (C P - N) 80.3 (2.5)† 87.0 (1.3)† 83.7 (1.9)† 84.3 (1.7)† 83.1 (1.9)† 80.9 (2.4)† 88.3 (1.0) 84.6 (1.7)† 85.5 (1.5) 84.2 (1.9)†

A + V (I P - S ) 62.3 (11.4)† 82.1 (3.2)† 72.2 (7.3)† 75.8 (5.3)† 73.0 (6.0) 73.7 (8.1) 87.6 (2.5) 80.7 (5.3) 83.2 (4.0) 79.5 (5.3)

A + V (I P - N ) 68.2 (10.5)† 83.7 (3.1)† 76.0 (6.8)† 78.6 (5.1)† 76.1 (5.8)† 80.4 (7.3)† 89.8 (2.3)† 85.1 (4.8)† 86.6 (3.6) 84.1 (4.9)†

A + V (P F - S) 76.6 (1.9)† 86.2 (0.7)† 81.4 (1.3)† 82.6 (1.1)† 80.8 (1.2)† 83.5 (1.2)† 90.4 (0.5)† 86.9 (0.8)† 87.8 (0.7)† 86.0 (1.0)†

A + V (P F - N) 79.4 (2.2)† 87.6 (1.0)† 83.5 (1.6)† 84.5 (1.4)† 82.9 (1.5)† 84.7 (2.2)† 91.1 (0.9)† 87.9 (1.6)† 88.7 (1.3)† 87.0 (1.7)†

AMI dataset, the full prediction-based and cross-modal
prediction fusion with no normalisation perform similarly
and they are the best approaches for all performance
measures. They achieve an absolute increase over the
combination of decision- and feature-level fusion of up
to 4.2% on the mean F1. It is worth pointing out that
although intra-modal prediction fusion does not perform
well, the full prediction-based system capitalises on the
good performance of the cross-modal prediction system
and the overall performance is not degraded. This happens
because the correct class predictor produces a much lower
prediction error than the wrong class predictor in the
cross-modal prediction system and this difference is larger
than the difference between the wrong class and the correct
class prediction errors in the intra-modal prediction system.

On the MAHNOB dataset, the full prediction-based
fusion approach independent of the normalisation scheme
results in the best performance for all performance
measures. It achieves an absolute increase over the
combination of decision-level and feature-level fusion of
up to 5.4% on the mean F1. In this case, both cross- and
intra-modal prediction fusion approaches perform well so
their combination results in improved performance.

It is also obvious that none of the standard fusion meth-
ods outperforms the audio-only classification. This is due to
the bad performance of the visual features which particulaty
affects feature-level fusion.

We should also emphasise the different type of informa-
tion encoded by the different fusion approaches. As shown
in Table 2, prediction-based fusion is based on the one-way
relationship between visual and audio features (video-to-
audio predictor) and to a lesser degree on the temporal evo-
lution of the audio features (audio-to-audio predictor). The
combination of decision-level and feature-level fusion relies
mostly on decision-level fusion which in turn is mainly
based on the audio-only classifier, i.e., on the temporal
evolution of the audio features. It is therefore obvious that
prediction-based fusion offers a different representation of

the audio and visual information and is also capable of
extracting information which may not be easily accessible
to standard fusion approaches.

It is also apparent that having no normalisation results
in slightly better performance than softmax normalisation in
most cases. Although softmax normalisation converts the er-
rors in the same scale it distorts the difference between them
achieving poorer performance results. On the other hand,
having no normalisation does not introduce any distortion,
and leads to slightly better performance, but it should be
emphasised that the weights act as scaling factors as well
and do not measure just the relative importance. For both
types of normalisation the MAE led to the best performance
on the validation set and that is the prediction error measure
used in all experiments.

7.2 Non-linguistic Vocalization Classification
In this experiment, we use the AVIC database in order
to classify 3 different non-linguistic vocalisations: laughter,
hesitation, and consent, from a garbage class that contains
other noises. Subjects 8 to 14 are used for training, subjects
15 to 21 are used for validation, and the first 7 subjects are
used for testing.

The optimal weights for the non-linguistic vocalisation
classification task are shown in Table 5. Similarly to
laughter-vs-speech discrimination, the video-to-audio and
the audio-to-audio predictors are clearly favoured for
all classes and both types of normalisation. In case of
decision-level fusion, the audio-only classifier is heavily
favoured. However, the second layer weights follow a
different pattern. The intra-modal prediction system is
clearly favoured over the cross-modal prediction system
independently of the normalisation used. This means that
for this task the intra-modal prediction is more important.
The intra-modal prediction weights are higher when no
normalisation is applied, revealing also in this experiment
that the cross-modal prediction errors tend to be higher
than the intra-modal prediction errors.
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TABLE 4: F1 and Unweighted Average Recall (UAR) Classification Rates (CR) for the Audio-only classifier (A), Video-only
classifier (V), Feature-level Fusion (F F), Decision-level Fusion (D F), the combination of DF and FF, Cross-modal Prediction
fusion (C P), Intra-modal Prediction Fusion (I P) and the full prediction-based system with no normalisation (P F - N) and
softmax normalisation (P F - S). Subjects 1 to 7 from the AVIC dataset are used as test set. The mean and (St. Dev.) over 30
experiments are presented. The two highest mean values in each column are given in bold. † denotes that the difference
between the prediction-based approaches and D F + F F is statistically significant.

Classification F1 F1 F1 F1 F1 CR UAR
System Garbage Laughter Consent Hesitation Mean
Test → AVIC

A 51.1 (3.8) 58.3 (2.6) 40.0 (5.2) 67.2 (2.8) 54.1 (2.2) 58.8 (2.4) 58.7 (2.4)
V 44.4 (4.1) 38.9 (2.6) 35.5 (3.4) 57.1 (3.7) 44.0 (2.0) 48.5 (2.6) 48.9 (2.5)

A + V (D F) 53.4 (3.9) 60.1 (2.4) 43.6 (5.5) 68.2 (2.8) 56.3 (2.2) 60.6 (2.4) 61.0 (2.3)
A + V (F F) 53.4 (2.5) 57.3 (2.4) 43.3 (2.8) 63.1 (3.1) 54.3 (1.8) 57.2 (2.3) 60.5 (1.6)

A + V (DF + FF) 54.3 (4.0) 60.5 (2.5) 44.8 (5.1) 68.4 (2.7) 57.0 (2.2) 61.1 (2.4) 61.8 (2.2)

A + V (C P - S) 38.9 (3.6)† 56.9 (2.2)† 37.3 (4.2)† 65.7 (1.8)† 49.7 (2.1)† 54.8 (1.9)† 53.6 (2.7)†

A + V (C P - N) 45.8 (3.1)† 54.3 (2.1)† 36.8 (5.4)† 67.0 (1.4) 51.0 (2.0)† 56.7 (1.6)† 54.3 (2.4)†

A + V (I P - S) 54.4 (3.4) 77.1 (4.6)† 47.3 (7.8) 82.3 (2.6)† 65.3 (2.9)† 72.6 (3.0)† 64.9 (3.0)†

A + V (I P - N) 50.2 (2.7)† 72.8 (3.7)† 46.1 (6.2) 79.2 (1.9)† 62.1 (2.2)† 69.2 (2.2)† 62.3 (2.4)

A + V (PF - S) 56.9 (2.9) 71.0 (2.6)† 44.0 (3.3) 75.9 (1.8)† 62.0 (1.6)† 67.7 (1.8)† 64.0 (1.9)†

A + V (PF - N) 57.7 (2.2)† 67.2 (2.5)† 46.2 (4.2) 74.9 (1.0)† 61.5 (1.6)† 67.0 (1.2)† 64.2 (2.0)†
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(c) Test Set: AVIC

Fig. 7: Mean F1 as a function of the babble noise added to the audio signal for different test sets. Prediction-based fusion is
the best performing approach over all noise levels except for -5 dB and 0 dB on the AVIC dataset. V: Video-only classifier,
A: Audio-only classifier, FF: Feature-level Fusion, DF: Decision-level Fusion, PF: Prediction-based Fusion with softmax
normalisation, SNR: Signal-to-Noise Ratio.

Table 4 shows the performance of the different
approaches on the AVIC dataset. On average, the intra-
modal prediction module with softmax normalisation
is the best performing approach achieving an absolute
improvement of 8.3% on the mean F1 over the combination
of decision-level and feature-level fusion. Similarly, all other
prediction-based fusion approaches with the exception of
cross-modal prediction fusion outperform all the standard
fusion approaches.

In this experiment, cross-modal prediction fusion per-
forms poorly because the audio and visual features are not
highly correlated. For example, hesitation can be accom-
panied by either subtle facial expressions, like Fig. 6, or
no facial expressions like Fig. 9. In other words, the facial
expressions accompanying hesitation and consent are not as
consistent as in the case of laughter or speech and as a con-
sequence the audio and visual features are less correlated.

It is also clear from Table 4 that intra-modal prediction
fusion and full prediction-based fusion perform similarly
for most performance measures in case of no normalisation.
The same is not true when softmax normalisation is used
and the bad performance of the cross-modal prediction has
a negative effect on the the full prediction-based system.
The prediction error difference between the wrong classes
predictors and the correct class predictor in the cross-modal
prediction module is high enough so it cannot be offsetted
by the difference between the correct and wrong classes pre-
dictors in the intra-modal prediction module. This happens
possibly due to distortion of the prediction error differences
when softmax normalisation is applied.

As shown in Table 5, prediction-based fusion is based
on the temporal evolution of the audio features (audio-to-
audio predictor) and to a much lesser degree on the one-
way relationship between visual and audio features (video-
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TABLE 5: Optimal weights, for prediction-based fusion,
feature-level fusion and decision-level fusion. All param-
eters were optimised on subjects 15 to 21 from the AVIC
dataset.

Prediction-Based Fusion Prediction-Based Fusion
Softmax Normalisation No Normalisation

[wG
V A,wG

AV ] [1 0] [wG
V A,wG

AV ] [0.80 0.20]
[wG

V V ,wG
AA] [0.05 0.95] [wG

V V ,wG
AA] [0 1]

[wL
V A,wL

AV ] [0.75 0.25] [wL
V A,wL

AV ] [0.90 0.10]
[wL

V V ,wL
AA] [0 1] [wL

V V ,wL
AA] [0 1]

[wC
V A,wC

AV [0.85 0.15] [wC
V A,wC

AV ] [0.90 0.10]
[wC

V V ,wC
AA] [0 1] [wC

V V ,wC
AA] [0 1]

[wH
V A,wH

AV ] [0.65 0.35] [wH
V A,wH

AV ] [1 0]
[wH

V V ,wH
AA] [0 1] [wH

V V ,wH
AA] [0.15 0.85]

[wG
CP ,wG

IP ] [0.20 0.80] [wG
CP ,wG

IP ] [0.05 0.95]
[wL

CP ,wL
IP ] [0.15 0.85] [wL

CP ,wL
IP ] [0.05 0.95]

[wC
CP ,wC

IP ] [0.25 0.75] [wC
CP ,wC

IP ] [0.05 0.95]
[wH

CP ,wH
IP ] [0.35 0.65] [wH

CP ,wH
IP ] [0.05 0.95]

Decision-Level Fusion Decision-Level Fusion
Feature-Level Fusion

[wA, wV ] [0.80 0.20] [wFF , wDF ] [0.05, 0.95]

to-audio predictor). The combination of decision-level and
feature-level fusion relies mostly on decision-level fusion
which in turn is mainly based on the audio-only classifier,
i.e., on the temporal evolution of the audio features. Hence,
in this experiment the better performance of prediction-
based fusion is mostly due to the different representation
of the audiovisual information.

Finally, both types of normalisation perform similarly
with the exception of intra-modal prediction fusion where
softmax normalisation is superior. Overall, we see that
softmax normalisation tends to distort the prediction error
differences and this can have both positive and negative
effects depending on the dataset, whereas no normalisation
tends to be more stable. In case of softmax vs having no
normalisation the L2−E and MSE were found to be the best
performing error measures, respectively, on the validation
set and these are the prediction error measures used in all
experiments.

8 EFFECT OF AUDIO NOISE

In order to investigate the robustness to audio noise of the
audiovisual fusion approaches we run experiments under
varying noise levels. The audio signal for each example
is corrupted by additive babble noise from the NOISEX
database [67] so as the SNR varies from -5 dB to 30 dB.

Results for the AMI, MAHNOB and AVIC datasets are
shown in Fig. 7a, 7b and 7c, respectively. Overall, we see that
prediction-based fusion is more robust to audio noise than
the combination of decision- and feature-level fusion. The
video-only classifier (blue solid line with triangle markers)
is not affected by the addition of the audio noise and
therefore its performance remains constant over all noise
levels. On the other hand, as expected, the performance
of the audio classifier (green dashed line) degrades as the
audio noise increases.

The best performing approach over all noise levels on
the AMI and MAHNOB datasets is the full prediction-based

fusion (grey solid line). More specifically, its performance on
the AMI dataset ranges from 82.5% (1.4) to 68.9% (2.0) and
is the only approach which remains above the video-only
performance for all noise levels until -5 dB. On the MAH-
NOB dataset, it achieves a mean F1 of 86.8% (0.8) in 30 dB
which decreases to 78.4% (2.0) in -5 dB. On both datasets the
combination of decision- and feature-level fusion is almost
identical to audio-only classification since it is mostly based
on the audio-only classifier as shown in Table 2.

Similar conclusions can be drawn for the AVIC dataset,
Fig. 7c. Between 10 dB and 30 dB prediction-based fusion
is the best performing approach and the combination of
decision- and feature-level fusion is the second best. The
main difference with the other two datasets lies in the two
noisiest levels. In 0 dB, both methods result in the same
performance, whereas in -5 dB the combination of decision-
and feature-level fusion performs slightly better, 44.6% (1.3),
than prediction-based fusion, 42.4% (1.8).

9 DISCUSSION

The main advantage of the prediction-based fusion
approach is that it does not explicitly rely on the actual
values of the features as is the case for feature-level or
decision-level fusion. The problem is converted into a
competition between several models, e.g., a laughter and
a speech model or a laughter, a hesitation, a consent and a
garbage model. It does not matter if the prediction is good or
bad, what matters is if the correct prediction model is closer
to the actual values than the competitor models. This means
that what matters is the relative position of the prediction
errors and not their absolute values. Since the audio-
visual feature relationship and their temporal evolution
are different for each vocalisation, it is expected that the
predictor which corresponds to the input vocalisation, i.e.,
was trained to model the audiovisual relationship for this
vocalisation, will make a better prediction and hence the
input example will be correctly classified.

An illustration of this principle is shown in Fig. 8 and 9.
Fig. 8f shows the output of decision-level and feature-level
fusion system for a laughter episode from the MAHNOB
database. The output is negative most of the time and the
episode is incorrectly labelled as speech. Fig. 8g shows the
MAE per frame for the laughter and speech predictors com-
puted from eq. 13. For almost all frames the laughter pre-
dictors give a better prediction than the speech predictors
as expected, since they better model the audiovisual rela-
tionship for laughter. The total error over the entire episode
is 33.7 and 37.7 for laughter and speech, respectively, and
therefore the episode is correctly classified as laughter.

An example from the AVIC database is shown in Fig. 9.
Fig. 9f shows the output of the combination of feature- and
decision-level fusion approach for a hesitation episode. The
garbage output (blue line) consistently produces the highest
output so the episode in incorrectly classified as garbage.
Fig. 9g shows the MSE per frame for all four prediction
models. For almost all frames the hesitation model results in
the lowest MSE. The total MSE error over the entire episode
is 1.4, 2.5, 1.5, and 1.1, for the garbage, laughter, consent
and hesitation predictors, respectively, which means that
this episode is correctly classified as hesitation.
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(f) Output of DF + FF. The caption shows the total score. A single output
NN is used where positive/negative output correspond to laughter and
speech, respectively. The example is misclassified as speech since the
total score is negative.
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(g) MAE of the laughter and speech models. The caption shows the
total MAE over the entire episode. The example is classified as laughter
since this model leads to the lowest error.

Fig. 8: Example of laughter (L) from the MAHNOB database,
Session S004-006, which is classified correctly by the full
prediction-based approach but misclassified by the combi-
nation of decision-level (DF) and feature-level fusion (FF) as
speech (S).

Fig. 10a shows the total score of a laughter episode, from
the MAHNOB database, assigned by the combination of
decision- and feature-level fusion for different noise levels.
It can be seen that as the SNR becomes lower, the total
score becomes lower as well. From 10 to 30 dB the total
score is above zero and the episode is correctly classified
as laughter. However, between -5 dB and 5 dB the score is
negative, and the example is misclassified as speech. Fig.
10b shows the total laughter and speech prediction error of
the same episode for the same noise levels. As the noise level
increases, the prediction error of the correct model (laugh-
ter) becomes worse but lower than the error of the wrong
model (speech) and hence the sequence is labelled correctly.
Therefore, in this case, the episode is correctly classified for
all noise levels. It does not matter if the absolute prediction
error increases with the addition of noise, what matters is
the relative position of the two errors.

10 CONCLUSION

This paper has approached the problem of audiovisual
fusion from a new perspective. Inspired by recent com-

(a) Frame 1132 (b) Frame 1136 (c) Frame 1139 (d) Frame 1142
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(f) Output of DF + FF. The caption shows the total score for each class.
One NN with four outputs is used, where each output corresponds
to one class. The example is misclassified as garbage since this output
leads to the highest score.
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(g) MSE of the four models. The caption shows the total MSE over the
entire episode. The example is classified as hesitation since this model
leads to the lowest error.

Fig. 9: Example of hesitation from the AVIC database,
subject VP12 (VP12 part1), which is classified correctly by
the full prediction-based approach but misclassified by the
combination of decision-level (DF) and feature-level fusion
(FF) as garbage. G: Garbage, L: Laughter, C: Consent, H:
Hesitation.

putational models of the brain, we have presented a new
approach called prediction-based audiovisual fusion and
compared its performance with two of the most commonly
used fusion approaches, decision-level and feature-level.
The main idea is that predictive models can be used to
model the spatiotemporal relationship and the time evo-
lution of the audio and visual features. The concatenation
in feature-level fusion can be replaced by models which
predict the visual features based on audio and vice versa
for each class separately. Similarly, the audio and visual
streams in decision-level fusion can be modelled by two
one-step-ahead predictors. Fusion takes place by combining
the prediction errors from all models in a hierarchical way.
Classification occurs by labelling an input sequence based
on the class-specific model that produces the lowest predic-
tion error. When tested on classification of nonlinguistic vo-
calisations with and without added audio noise, prediction-
based fusion outperforms the standard fusion methods in
virtually all cases. A drawback of this approach is that if the
time series vary a lot within each class then the performance
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(a) Output of the combination of
DF and FF summed over the en-
tire sequence for different audio
noise levels. Between -5 dB and
10 dB the output becomes nega-
tive so the episode is wrongly la-
belled as speech.
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(b) Total MAE over the entire
sequence of the laughter and
speech predictors for different au-
dio noise levels. For lower SNRs
the prediction error increases for
both predictors so the example is
classified correctly as laughter in
all cases.

Fig. 10: Output of the combination of decision-level (DF) and
feature-level fusion (FF), and full prediction-based fusion
with no normalisation, on a laughter episode from the
MAHNOB database (session S014-001, start frame: 741, end
frame: 754), as a function of the audio noise level.

may degrade since a single set of predictors will try to
model the high class variability. One line of research we
are currently investigating in order to solve this problem is
the creation of multiple sets of predictive models which are
trained on different clusters of time series within each class.
This has the potential to lead to more accurate predictions
which can further enhance performance.
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