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Abstract

Emotion recognition in speech (ERS) is a hot research
topic in the field of affective computing. Giving com-
puters the ability to know the emotions from a subject
is an important aspect in naturalistic human-computer
interaction or user profiling. Recent methods to tackle
the complex task of ERS employ deep neural networks.
As human emotion is an affective state, which changes
over time, the neural network has the task of sequence-
to-sequence modelling. This is usually implemented as
a recurrent neural network (RNN), such as a long short-
term memory RNN. Even though in recent work, the
audio signal is directly fed into the network, the most
common approach is to feed the RNN with acoustic low-
level features, describing prosodic, spectral, or cepstral
characteristics of the speech. Instead of using the raw
low-level features, they can also be encoded in terms of
the bag-of-audio-words approach, where the feature vec-
tors are quantised using a previously learnt codebook of
templates and the occurrence of each template is encoded
in a sparse histogram vector. In this contribution, we
propose a deep learning framework for ERS and com-
pare different feature representations. Results are pre-
sented using a state-of-the-art benchmark database from
the domain of affective computing.

Introduction

The automatic recognition of human emotions from
speech or other vocalisations, such as laughter, is a pre-
vailing topic in the field of affective computing. Appli-
cations range from naturalistic human-machine interac-
tion to automated market research. Instead of categoris-
ing emotions into discrete classes such as anger, happi-
ness, or boredom, the two-dimensional continuous model
of arousal and wvalence is quite common [1, 2]. While
arousal specifies the level of alertness of a person, va-
lence (or pleasure) specifies whether the emotion is posi-
tive or negative. In contrast to personality traits, human
emotion is a state that may vary rapidly over time [3],
e.g., within successive speaker turns in a conversation.
This is why recent multimodal affect databases, such as
RECOLA [3] or SEWA [4] provide time-continuous an-
notations of emotional dimensions.

Most of the methods to tackle the complex problem of
automatic emotion recognition proposed during the last
two decades are based on machine learning, i.e., they are
approaches that learn models from sample data. From
the methodological point of view, a large variety of meth-
ods has been investigated, such as hidden Markov mod-

els [5], or acoustic feature brute-forcing [6] and bag-of-
audio-words [7] in combination with a static machine
learning model such as support vector machine (SVM).
The latter approaches involve the problem that they take
into account only a limited amount of temporal context.
Specific architectures of neural networks, the so-called
recurrent neural networks (RNNs), are capable of mod-
elling time-series. A milestone in this context have been
the long short-term memory-RNNs (LSTM-RNNs), pro-
posed by Hochreiter and Schmidhuber [8], making it pos-
sible to consider and memorise context over an (in the-
ory) unlimited time. Eyben et al. have shown that the
utilisation of LSTM-RNN architectures to dynamically
model emotion in speech is superior to static modelling
with an SVM [9]. Moreover, they have proposed to train
the neural network simultaneously on multiple targets
(‘multi-task learning’), i.e., multiple emotional dimen-
sions, in order to increase the accuracy of the prediction
by providing the training process with side information
and to exploit dependencies. They used an architecture
consisting of two hidden LSTM layers, however, optimi-
sation of all model hyperparameters is time-consuming.
The winners of the 2017 Audio- Visual Emotion Challenge
(AVEC), a yearly research challenge in the field, also
found that LSTM-RNNs outperform static classifiers and
that multi-task learning outperforms single-task learn-
ing [10]. As acoustic features, they fused both neural
network-learnt representations and hand-crafted brute-
forced feature sets.

In principle, LSTM-RNNs can handle the raw acous-
tic short-term features (low-level descriptors, LLDs), ex-
tracted on audio frame-level, without the need to sum-
marise them over a larger segment as it is needed for
static classifiers. However, it is quite common to ap-
ply functionals, i.e., statistics over the LLDs of a short
segment in time. In this work, we investigate the influ-
ence of different acoustic feature representations, func-
tionals and bag-of-audio-words (BoAW) to be used for
LSTM-RNN architectures with the AVEC 2017 emotion
database. In the following section, we explain the cor-
pus used in our experiments before the employed feature
representations and deep learning models are presented.
Afterwards, results are shown and discussed, followed by
the conclusion and an outlook on future research.

Corpus

We used the German subset of the SEWA corpus’, con-
sisting of audio-visual recordings of 64 subjects in dyadic

Thttps://db.sewaproject.eu/
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Figure 1: Structure of the investigated emotion recognition model.

interaction through a video chat platform. Each pair
of subjects was recorded for up to 3 minutes while dis-
cussing a commercial watched beforehand, totalling up
to 178 minutes of audio/video. The emotion of each
subject was annotated continuously over time in terms
of arousal and valence by six different annotators. The
contours of each emotional dimension, annotated using a
joystick, were smoothed using a median filter and com-
bined considering inter-rater agreement to form a unique
gold standard, with a step size of 100ms. The SEWA
corpus was used as the benchmark database in the Affect
sub-challenge of AVEC 2017 [4]. The same partitioning
(34/14/16 subjects for training/development/test) was
used in our experiments to ensure comparability and re-
producibility of the proposed approach. However, we
used only the acoustic domain of the data, neither the
video nor the manual text transcriptions that were pro-
vided for the challenge. The third dimension annotated
in the dataset, liking, describing how much the subjects
liked the product advertised in the commercial or the
commercial itself, is not considered in our experiments
as it is mainly reflected in the linguistic content of the
speech.

Methodology

Although recent deep learning approaches to emotion
recognition in speech (ERS) model the raw waveform
of the speech signal directly, referred to as end-to-end
learning [11, 12], most systems still rely on hand-crafted
acoustic features. For ERS, an optimised acoustic feature
set exists with the Geneva Mimimalistic Acoustic Param-
eter Set [13], whose extended version (EGEMAPS) was
used in our experiments. EGEMAPS defines 23 acoustic
low-level descriptors (LLDs) that are extracted sequen-
tially from short frames (20ms - 60ms) of the signal,
where the audio is considered quasi-stationary, with a
shift (hop size) of 10ms. The set mainly consists of voice
related parameters, such as Mel-frequency cepstral coef-
ficients (MFCCs) 1 to 4, the frequency and amplitudes
of the formants 1 to 3 (and the bandwidth of the 1%¢
formant), FO (pitch), jitter, shimmer, and harmonics-
to-noise ratio. In addition to that, loudness and 7 spec-
tral balance descriptors (e. g., spectral flux) are included.
The full list of LLDs is found in the article by Eyben at
al. [13].

As the employed RNN architectures are dynamic ma-
chine learning models, the LLD series can be fed directly
into them as an input. However, the target dimensions
are given with a frequency of 10 Hz and would need to
be upsampled to match with the input series, which in-

creases the time required for training the network. Fur-
thermore, it was observed that training converges better
if the LLDs are summarised over a certain block (win-
dow) in time, to match with the targets. We compare
three different ways to represent the LLDs:

1. The 88 functionals defined in EGEMAPS: mean,
standard deviation, percentiles, and slope of the FO
and loudness contours and only mean and standard
deviation for the other LLDs (MFCC, spectral de-
scriptors, etc.). In addition to that, some rhythm-
related features are computed, namely, the rate of
loudness peaks, the mean length and the standard
deviation of continuously voiced and unvoiced re-
gions, and the number of continuous voiced regions
per second.

2. Only mean and standard deviation (Mean+Std) for
all LLDs, resulting in 46 functionals.

3. BoAW representations of the LLDs. In this ap-
proach, each LLD vector in the audio is quantised
according to a codebook of template ‘audio words’
that have been learnt from the training set using
a random sampling. A histogram (BoAW) fea-
ture vector is then generated counting the occur-
rences of each template in a given audio segment
or block [7, 14, 15]. While this vector is usually
sparse, the sparseness can be reduced by assigning
more than one template to each LLD vector. Be-
sides this number of assignments, the codebook size
(number of templates) is the most important param-
eter. To reduce the range of the histogram values,
the term-frequencies are finally logarithmised. In
this work, we considered codebook sizes of 100 or
1000 and 1 or 10 assignments.

EGEMAPS features have been extracted using our
feature extractor OPENSMILE [16], BoAW have been
computed using our crossmodal bag-of-words toolkit
OPENXBOW [17] with the default random seed. As in
the SEWA corpus the audio signals belonging to either
subject in a conversation are the same, an additional fea-
ture is added to the input feature sequence, derived from
the speaker turn information, which was provided to all
participants of AVEC 2017. For each timestamp, this
feature is either 0 or 1, indicating whether the subject
is audible or not. As the annotation of the SEWA cor-
pus has been made in real-time, i. e., while watching the
video and listening to the audio played back in normal
speed, there is usually a temporal delay present between
the emotion of a subject and the contour of the anno-
tation [7]. Even though RNNs have the capability of
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Figure 2: Results for the emotion recognition (in terms of the concordance correlation coefficient, CCC) for all investigated
feature representations and three different window sizes (ws; 0.1s, 0.5s, 2.0s).: EGEMAPS functionals, mean and standard
deviation (Mean+Stddev), and bag-of-audio-words (BoAW, with codebook sizes, CS, 100 and 1000 and numbers of assignments,

NA, 1 and 10).

modelling this delay, we found that it improves the train-
ing when shifting the annotations to the front for half of
the block size, i.e., the width of the window which sum-
marises the LLDs, and shifting the predictions back for
the same interval.

Figure 1 shows the structure of the employed deep neural
network (DNN). It was derived from preliminary exper-
iments, in which we found that, a DNN consisting of
four layers leads to competitive results on the SEWA
corpus. The RNN layers consist of LSTM cells; it was
also tried to replace layers with time-distributed fully-
connected layers. For the first layer, the performance
was not decreased by this, so we used a fully-connected
layer to save time for training the DNN, optimising the
number of units between 200 and 1000, accounting for
the varying dimensionalities of the input. However, the
number of units in this layer did not have a big influ-
ence on the results. For all recurrent layers, a number
of 32 units seemed to be an optimum. As there are de-
pendencies and correlations in the emotional dimensions
arousal and valence [10], we considered both multi-task
learning, i. e., training a DNN with two outputs and two
errors at the same time, and single-task learning. Usu-
ally, it is expected that a model considering both dimen-
sions at the same time has certain advantages, exploiting
cross-dependencies between the annotations [9]. Thus,
the model in Figure 1 has two output neurons, with a lin-
ear activation, though a hyperbolic tangent (tanh), which
is employed for all other units, leads to similar results.

As in the AVEC 2017 challenge, the concordance corre-
lation coefficient (CCC) is used as a metric to evaluate
the results. It is taking into account both the correlation
between the prediction and the target and the difference
and thus, it is a good compromise between the linear cor-
relation coefficient and the mean squared error. We use
CCC also as an objective function when training the net-
work, as superior results can be expected doing this [18].

In our preliminary experiments, we further found that
bidirectional LSTM-RNNSs, i.e., using one RNN in for-
ward direction and a parallel one in backward direction,
does not improve the performance. A similar outcome
was also found in the work by Trigeorgis et al. [11].
Dropout did not have a meaningful influence on the per-
formance, so we used a dropout of 10 % in all layers. We

trained the DNN with the full batch in each epoch (max-
imum 300 epochs), training was stopped when there was
no improvement in the predictions for either dimension
on the development set (in terms of the CCC) for 10
epochs and the performance was evaluated for the model
providing the largest CCC on the development set; we
utilised RMSprop as an optimiser.

Results and Discussion

The results of the proposed ERS model on the test set
are displayed in Figure 2. The learning rate as well as
the number of neurons in the first layer have been opti-
mised on the development set. Results are shown for all
three types of representations, the four configurations of
the BoAW, and three different window sizes (0.1s, 0.5s,
2.0s). It can be seen that, in most cases, a short window
size (0.1s-0.5s) works better, except for the BoAW rep-
resentations with a codebook size of 1000 for valence. A
possible explanation for this is that a BoAW vector with
a large codebook is very sparse and that summarising
over a larger window softens this effect. For arousal, the
EGEMAPS functionals provide the best results, while
valence is better predicted using only Mean+Std as func-
tionals.

The optimum results are shown in Table 1. Surpris-
ingly, we also found that, single-task learning outper-
forms multi-task learning in some cases. Thus, the op-
timum result displayed for arousal has been obtained
with single-task learning and Mean+Std features, while
for valence, multi-task learning yielded a slightly bet-
ter result for the same feature representation. Outper-
forming both the audio-only and the multi-modal (au-
dio+video+linguistic) baselines of the AVEC 2017 chal-
lenge, we also outperform the winners’ audio-only model
for arousal while obtaining a similar performance for va-
lence [10]. The winning team employed a combination of
hand-crafted features and SOUNDNET features, learned
from the raw audio waveform in a transfer learning ap-
proach on an audio-visual database [19].

Conclusion and Outlook

In this contribution, we proposed a model for time-
continuous emotion recognition from the speech signal in
terms of arousal and valence, using hand-crafted acoustic



Table 1: Results for automatic emotion recognition on the
AVEC17 Affect Sub-Challenge corpus (SEWA-German) in
terms of CCC; A: Arousal, V: Valence.

Method Ii)evel - 'iest -

AVECI17 Baseline-Audio 344 | 351 | .225 | .244
AVECI17 Baseline 373 | 507 | 375 | .466
AVEC17 Winner (Audio) |— — 437 | 494
AVEC17 Winner [10] 823 | .796 | .672 | .756
Proposed (Mean+Std) .586 | .516 | .499 | .489

features and an LSTM-RNN consisting of four layers. We
showed that, the representation of the input feature has
a meaningful influence on the performance of the model.
Future work will include cross-cultural and multi-modal
analysis of in-the-wild emotional corpora and further in-
vestigations of audio word embeddings for deep learning
architectures.
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